Fixed orthodontic appliances hinder the maintenance of proper oral hygiene and result in dental plaque accumulation. Many studies report that qualitative changes in the dental flora occur after initiating the orthodontic treatment, but there is a paucity of literature on the same topic among Moroccan orthodontic patients. The aim of this study was to evaluate the changes of the oral microbial flora during the orthodontic treatment period of a young Moroccan population. Materials and Methods. Dental plaque samples of 18 patients, who were randomly selected before the placement of orthodontic appliances, were collected to isolate and identify the bacterial species involved using classical bacteriological methods for species' culture and identification. The reading was recorded at T0 before placement of the device. New samples were taken again one month later and then three months afterwards, where the readings were recorded as T1 and T2, respectively. The culture was made via Columbia Agar with 5% sheep blood, Todd Hewitt Broth, and Schaedler medium containing vitamin K3. Bacterial species were identified using API-20 Strep for Streptococci and API-20 A for anaerobic bacteria. The phoenix system was used for identification. Results. After three months of orthodontic treatment, the increase in the frequency of Streptococcus sobrinus and Streptococcus mitis were significant (0.01 and 0.02, respectively) as well as for Lactobacillus (0.03). No significant difference was recorded for other bacterial species. Conclusion. There is a significant qualitative change in oral microorganisms after three months of orthodontic treatment, especially for bacteria that are incriminated in caries formation.
This study aimed to compare the resistance of dental alloys to corrosion in a solution containing oral bacteria named Streptococcus mutans (S.mutans). The electrochemical behavior of Nickel-Titanium (NiTi) was investigated in sterile Fusayama artificial saliva (AS) with the enrichment medium tryptic soy broth (TSB) in solution 1 and (AS) with (TSB) and bacteria in solution 2. The electrochemical procedures selected for this work were open circuit potentials (OCP), Potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). The NiTi surface was examined using optical microscopy.   After 24 hours of immersion in artificial saliva, the results have shown that NiTi revealed high corrosion reactivity in the presence of S. mutans and present pitting corrosion on the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.