This work involves the preparation and characterization of alginate nanoparticles (Alg NPs) as a new transdermal carrier for site particular transport of glucosamine sulfate (GS). The GS–Alg NPs were examined through transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and dielectric spectroscopy. GS–Alg NPs was efficiently prepared via ionic gelation method which generates favorable conditions for the entrapment of hydrophilic drugs. The TEM studies revealed that GS–Alg NPs are discrete and have spherical shapes. FTIR studies showed a spectral change of the characteristic absorptions bands of Alg NPs after encapsulation with GS because of the amine groups of GS and the carboxylic acid groups of Alg. The DSC data showed changes in the thermal behavior of GS–Alg NPs after the addition of GS indicating signs of main chemical interaction among the drug (GS) and the polymer (Alg). The absence of the drug melting endothermic peak within the DSC thermogram of GS–Alg NPs indicating that GS is molecularly dispersed in the NPs and not crystallize. From the dielectric study, it was found modifications within the dielectric loss (ε″) and conductivity (σ) values after the addition of GS. The ε″ and σ values of Alg NPs decreased after the addition of GS which indicated the successful encapsulation of GS within Alg NPs. Furthermore, the dielectric study indicated an increase of the activation energy and the relaxation time for the first process in the GS–Alg NPs as compared to Alg NPs. Consequently, the existing observations indicated an initiation of electrostatic interaction among the amine group of GS and carboxyl group of Alg indicating the successful encapsulation of GS inside Alg NPs which could provide favorable circumstance for the encapsulation of GS for topical management.
Polyvinyl pyrrolidone/polyvinyl alcohol (PVP/PVA) and polyvinyl pyrrolidone/starch (PVP/St) blends were prepared with different compositions. The compatibility studies indicate that PVP/PVA is compatible while PVP/St is incompatible. The addition of glycerol and glutaraldehyde can improve to some extent the phase separation behavior between PVP and St. The permittivity e 0 and the dielectric loss e 00 were measured in the frequency range 0.01 Hz up to 10 MHz and temperatures from 30 up to 90 C. It is found that the blend ratio (50/50) of both investigated systems is preferable for insulation purposes in comparable with the other blends under investigation. The data of the loss electric modulus M 00 was calculated from the dielectric parameters e 0 and e 00 and analyzed into three relaxation mechanisms ascribing the cooperative motion of the main and side chains s 1 (ab), the side chain motion s 2 (b) and the segmental motion of the groups attached to the side chains s 3 (bc). The activation energy corresponds to the second relaxation process DH 2 was calculated using Arrhenius equation and found to be in the range which justifies the presumption of b-relaxation process.
The present study evaluates the synergistic antimicrobial effect of the propolis-encapsulated alginate nanoparticles (propolis-ALg NPs) against different pathogenic bacteria. The prepared samples were characterised by transimissin electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR), zeta potential and dielectric spectroscopy. The morphological analysis using TEM revealed that, the propolis-ALg NPs are spherical, discrete and have a small particle size (13 nm) in the nanometer scale. FTIR studies showed a spectral change of the characteristic absorption bands of ALg NPs after being encapsulated with propolis. A high negative zeta potential value is obtained for propolis-ALg NPs which indicates a high suspension stability of the prepared formulation. The dielectric study showed a decrease in the dielectric constant (ε′), dielectric loss (ε″) and conductivity (σ) values after the incorporation of the propolis into ALg NPs. All these investigations confirm the successful encapsulation of propolis within ALg NPs. On the other hand, the propolis-ALg NPs sample showed the highest antimicrobial activity against all examined pathogens in comparison with pure propolis and/or antibiotic (clindamycin). So, it can be concluded that the propolis-ALg NPs exhibited a synergistic antibacterial activity against different bacterial strains.
Glucosamine sulfate (GS) has been used orally for the treatment of osteoarthritis (OA). However, it may be susceptible to the liver first pass phenomenon, which greatly affects its bioavailability, in addition to its side effects on the gastrointestinal tract. Alginate nanoparticles (Alg NPs) were investigated as a new drug carrier for transdermal delivery of GS to improve its effectiveness and reduce side effects. GS-Alg NPs were characterized by encapsulation efficiency, NP yield, particle size and surface charge properties. The in vitro release studies of GS and the ex vivo permeability through rat skin were determined using a UV-Vis spectrophotometer. GS-Alg NPs are within the nanometer range of size. High negative surface charge values are obtained and indicate the high suspension stability of the prepared formulation. The in vitro release studies showed that GS is released from Alg NPs in a sustained and prolonged manner. The ex vivo permeability of GS through rat skin is enhanced significantly after encapsulation in the negatively charged Alg NPs. We successfully reported a highly stable nanoparticlulate system using Alg NPs that permits the encapsulation of GS for topical administration, overcoming the disadvantages of oral administration.
This investigation aimed to improve and enhance the immune system status of newborn Egyptian-Nubian goats using Alginate nanoparticles (ALg NPs) as a new drug carrier for the oral delivery of propolis. Propolis was selected as a natural additive of colostrum due to its amazing functional properties. In addition, through its implementation into ALg NPs, its handling properties have been improved and potentiated. Alginate-propolis NPs were prepared by the controlled gellification method. Morphological analysis of the ALg-propolis NPs was examined using a Transmission Electron Microscope (TEM). The flavonoids content of the propolis was analyzed by HPLC. Thirty twins Egyptian Nubian goats (Zaraibi) kids were randomly allotted into three groups; 10 in each group. The rearing systems during the suckling period were extended to 13 weeks as follows: C: Free suckling (FS), where the born kids were kept with their dams until being 13 weeks old (control). T1: (FS) + 0.6 ml propolis (twice/week). T2: (FS) + 0.06 ml Alg-propolis NPs (twice/week). The kids were weighed biweekly and the daily body weight gains were recorded. The serum levels of immunoglobulins; IgA and IgG, serum total protein as well as the serum cytokine levels; IFN-γ, TNFα, IL1β, and IL6 after treatment with propolis and ALg-Propolis NPs were determined at different treatment time. The HPLC analysis revealed 15 flavonoid compounds that are characteristic of propolis. The TEM result showed that the ALg-Propolis NPs are discrete and have spherical shapes with small particle sizes in the nanometer scale (10 nm). Also, the results revealed that both propolis and ALg-Propolis NPs caused a significant increase (P<0.05) of the serum IgG and IgA immunoglobulin levels and a decrease of the serum cytokine levels (IFN-γ, TNFα, IL1β, and IL6) of newborn Egyptian-Nubian goats. However, the ALg-Propolis NPs have a more potent effect on the IgG and IgA immunoglobulin levels and cytokine levels than pure propolis. The results indicated that the nano-encapsulation of propolis within ALg NPs reflected on the health status of the kids, increased the titer of the immunoglobulins; IgG and IgA and reduced the pro-inflammatory cytokines. It could conclude that the feasibility of developing a successful propolis oral delivery nano-system on an industrial scale using the ALg NPs to improve the immune status of the Egyptian-Nubian newborn kids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.