The Indonesian government committed to restoring over 2 million ha of degraded peatland by the end of 2020, mainly to reduce peat fires and greenhouse gas emissions. Although it is unlikely the government will meet this target, restoration projects are still underway. One restoration strategy involves blocking peatland drainage canals, but the consequences of this for smallholder farmers whose livelihoods are dependent on agriculture are unclear. This paper investigates perceived impacts of canal blocks on smallholder farmers and identifies factors that affect their willingness to accept canal blocks on their land. We use data from 181 household questionnaires collected in 2018 across three villages in Jambi province, Sumatra. We found that the majority of respondents would accept canal blocks on their farms, perceiving that the blocks would have no impact on yields or farm access, and would decrease fire risk. Respondents who would not accept blocks on their farms were more likely to use canals to access their farms and perceive that canal blocks would decrease yields. The majority of farmers unwilling to accept canal blocks did not change their mind when provided with an option of a block that would allow boat travel. Our results improve understanding of why some smallholders may be unwilling to engage with peatland restoration. Further research is needed to understand the impact of canal blocks on smallholders’ yields. Engaging with stakeholders from the outset to understand farmers’ concerns, and perceptions is key if the government is to succeed in meeting its peatland restoration target and to ensure that the costs and benefits of restoration are evenly shared between local stakeholders and other actors.
Ecological restoration is considered to play an important role in mitigating climate change, protecting biodiversity, and preventing environmental degradation. Yet, there are often multiple perspectives on what outcomes restoration should be aiming to achieve, and how we should get to that point. In this study we interview a range of policymakers, academics, and non‐governmental organization (NGO) representatives to explore the range of perspectives on the restoration of Indonesia's tropical peatlands—key global ecosystems that have undergone large‐scale degradation. Thematic analysis suggests that participants agreed about the importance of restoration, but had differing opinions on how effective restoration activities to date have been and what a restored peatland landscape should look like. These results exemplify how ecological restoration can mean different things to different people, but also highlight important areas of consensus for moving forward with peatland restoration strategies.
The loss of huge areas of peat swamp forest in Southeast Asia and the resulting negative environmental effects, both local and global, have led to an increasing interest in peat restoration in the region. Satellite remote sensing offers the potential to provide up‐to‐date information on peat swamp forest loss across large areas, and support spatial explicit conservation and restoration planning. Fusion of optical and radar remote sensing data may be particularly valuable in this context, as most peat swamp forests are in areas with high cloud cover, which limits the use of optical data. Radar data can ‘see through’ cloud, but experience so far has shown that it doesn't discriminate well between certain types of land cover. Various approaches to fusion exist, but there is little information on how they compare. To assess this untapped potential, we compare three different classification methods with Sentinel‐1 and Sentinel‐2 images to map the remnant distribution of peat swamp forest in the area surrounding Sungai Buluh Protection Forest, Sumatra, Indonesia. Results show that data fusion increases overall accuracy in one of the three methods, compared to the use of optical data only. When data fusion was used with the pixel‐based classification using the original pixel values, overall accuracy increased by a small, but statistically significant amount. Data fusion was not beneficial in the case of object‐based classification or pixel‐based classification using principal components. This indicates optical data are still the main source of information for land cover mapping in the region. Based on our findings, we provide methodological recommendations to help those involved in peatland restoration capitalize on the potential of big data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.