Oxidative stress plays a role in hyperoxaluria-induced kidney injury and crystallization. Bee pollen is a hive product with a high content of antioxidants. The antioxidant content and protective effect of bee pollen extract (BPE) against ethylene glycol (EG) induced crystalluria, and acute kidney injury (AKI) were investigated. The effect of BPE on the EG-induced liver injury and proteinuria was also examined. Ten groups of male Wister rats were treated daily with vehicle, cystone, BPE (100, 250, and 500 mg/kg b.wt.), and group 6–9 treated with EG, EG + BPE (100, 250, and 500 mg/kg b.wt.) and group 10 EG + cystone. The dose of EG was 0.75% v/v, and the dose of cystone was 500 mg/kg b.wt. On day 30, blood and urine samples were collected for analysis. Kidneys were removed for histopathological study. The antioxidant activity of BPE was assessed, and its total phenols and flavonoids were determined. EG significantly increased urine parameters (pH, volume, calcium, phosphorus, uric acid, and protein), blood urea, creatinine, and liver enzymes (P < 0.05). EG decreased creatinine clearance and urine magnesium and caused crystalluria. Treatment with BPE or cystone mitigates EG's effect; BPE was more potent than cystone (P < 0.05). BPE increases urine volume, sodium, and magnesium compared to the control and EG treated groups. BPE reduces proteinuria and prevents AKI, crystalluria, liver injury, and histopathological changes in the kidney tissue caused by EG. BPE might have a protective effect against EG-induced AKI, crystalluria, proteinuria, and stone deposition, most likely by its antioxidant content and activity.
Oxidative stress plays a role in hyperoxaluria-induced kidney injury and crystallization. Bee pollen is a hive product with a high content of antioxidants. The antioxidant content and protective effect of bee pollen extract (BPE) against ethylene glycol (EG) induced crystalluria and acute kidney injury (AKI) were investigated. Ten groups of male Wistar rats were treated with EG, cystone (500 mg/kg) or BPE at doses 100, 250, and 500 mg/ kg. On day 30, blood and urine samples were collected for analysis. Kidneys were removed for histopathological study. The antioxidant activity of BPE was assessed, and its total phenols and flavonoids were determined. EG significantly increased urine pH, volume, calcium, phosphorus, uric acid, and protein, and blood urea, creatinine, and liver enzymes (P<0.05). It decreased creatinine clearance and urine magnesium and caused crystalluria. Treatment with BPE or cystone mitigates EG's effect; BPE was more potent than cystone (P<0.05). BPE increases urine volume, sodium, and magnesium compared to the control and EG treated groups. BPE reduces proteinuria and prevents AKI, crystalluria, liver injury, and histopathological changes in the kidney tissue caused by EG. BPE might have a protective effect against EG-induced AKI, crystalluria, and proteinuria, and stone deposition, most likely by its antioxidant content and activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.