Climate change and variability are major threats to crop productivity. Crop models are being used worldwide for decision support system for crop management under changing climatic scenarios. Two-year field experiments were conducted at the Water Management Research Center (WMRC), University of Agriculture Faisalabad, Pakistan, to evaluate the application of CERES-Maize model for climate variability assessment under semi-arid environment. Experimental treatments included four sowing dates (27 January, 16 February, 8 March, and 28 March) with three maize hybrids (Pioneer-1543, Mosanto-DK6103, Syngenta-NK8711), adopted at farmer fields in the region. Model was calibrated with each hybrid independently using data of best sowing date (27 January) during the year 2015 and then evaluated with the data of 2016 and remaining sowing dates. Performance of model was evaluated by statistical indices. Model showed reliable information with phenological stages. Model predicted days to anthesis and maturity with lower RMSE (< 2 days) during both years. Model prediction for biological yield and grain yield were reasonably good with RMSE values of 963 and 451 kg ha, respectively. Model was further used to assess climate variability. Historical climate data (1980-2016) were used as input to simulate the yield for each year. Results showed that days to anthesis and maturity were negatively correlated with increase in temperature and coefficient of regression ranged from 0.63 to 0.85, while its values were 0.76 to 0.89 kg ha for grain yield and biological yield, respectively. Sowing of maize hybrids (Pioneer-1543 and Mosanto-DK6103) can be recommended for the sowing on 17 January to 6 February at the farmer field for general cultivation in the region. Early sowing before 17 January should be avoided due to severe reduction in grain yield of all hybrids. A good calibrated CERES-Maize model can be used in decision-making for different management practices and assessment of climate variability in the region.
Climate change is making the lands a harsher environment all over the world including Pakistan. It is expected to oppose us with three main challenges: increase in temperature up to 2-5 degree Celsius (heat stress), increasing water stress and severe malnourishment due to climate change. It has been foreseen that there will be a 10% increase of dryland areas with climate change in the world, with more variability and incidences of short periods of extreme events (drought and heat stress). Pearl millet is a hardy, climate smart grain crop, idyllic for environments prone to drought and heat stresses. The crop continues to produce highly nutritious grain sustainably, thereby encouraging the fight against poverty and food insecurity due to its resilience. The crop is more responsive to good production options (planting time, planting density, inter/intra row spacing, nitrogen application and irrigation). It has high crop growth rate, large leaf area index and high radiation use efficiency that confers its high potential yield. In most of the cases, pearl millet is remained our agricultural answer to the climate calamity that we are facing, because it is selected as water saving, drought tolerant and climate change complaint crop. In view of circumstances, pearl millet cultivation must be retrieved by recognizing production options in context to changing climate scenarios of Pakistan using crop modeling techniques.
Climate change is a serious threat to agriculture and food security. Extreme weather conditions and changing patterns of precipitation lead to a decrease in the crop productivity. High temperatures and uncertain rainfall decrease the grain yield of crops by reducing the length of growing period. Future projections show that temperature would be increased by 2.5°C up to 2050. The projected rise in temperature would cause the high frequent and prolong heat waves that can decline the crop production. The rise in temperature results in huge reduction in yield of agronomic crops. Sustaining the crop production under changing climate is a key challenge. Therefore, adaptation measures are required to reduce the climate vulnerabilities. The adverse effect of climate change can be mitigated by developing heat tolerant cultivars and some modification in current production technologies. The development of adaptation strategies in context of changing climate provides the useful information for the stakeholders such as researchers, academia, and farmers in mitigating the negative effects of climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.