Online websites use cookie notices to elicit consent from the users, as required by recent privacy regulations like the GDPR and the CCPA. Prior work has shown that these notices use dark patterns to manipulate users into making website-friendly choices which put users' privacy at risk. In this work, we develop CookieEnforcer, a new system for automatically discovering cookie notices and deciding on the options that result in disabling all non-essential cookies. In order to achieve this, we first build an automatic cookie notice detector that utilizes the rendering pattern of the HTML elements to identify the cookie notices. Next, CookieEnforcer analyzes the cookie notices and predicts the set of actions required to disable all unnecessary cookies. This is done by modeling the problem as a sequence-tosequence task, where the input is a machine-readable cookie notice and the output is the set of clicks to make. We demonstrate the efficacy of CookieEnforcer via an end-to-end accuracy evaluation, showing that it can generate the required steps in 91% of the cases. Via a user study, we show that CookieEnforcer can significantly reduce the user effort. Finally, we use our system to perform several measurements on the top 5k websites from the Tranco list (as accessed from the US and the UK), drawing comparisons and observations at scale.
Online services utilize privacy settings to provide users with control over their data. However, these privacy settings are often hard to locate, causing the user to rely on provider-chosen default values. In this work, we train privacy-settings-centric encoders and leverage them to create an interface that allows users to search for privacy settings using free-form queries. In order to achieve this goal, we create a custom Semantic Similarity dataset, which consists of real user queries covering various privacy settings. We then use this dataset to fine-tune a state of the art encoder. Using this fine-tuned encoder, we perform semantic matching between the user queries and the privacy settings to retrieve the most relevant setting. Finally, we also use the encoder to generate embeddings of privacy settings from the top 100 websites and perform unsupervised clustering to learn about the online privacy settings types. We find that the most common type of privacy settings are 'Personalization' and 'Notifications', with coverage of 35.8% and 34.4%, respectively, in our dataset.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.