Infectious Disease Prediction aims to anticipate the aspects of both seasonal epidemics and future pandemics. However, a single model will most likely not capture all the dataset’s patterns and qualities. Ensemble learning combines multiple models to obtain a single prediction that uses the qualities of each model. This study aims to develop a stacked ensemble model to accurately predict the future occurrences of infectious diseases viewed at some point in time as epidemics, namely, dengue, influenza, and tuberculosis. The main objective is to enhance the prediction performance of the proposed model by reducing prediction errors. Autoregressive integrated moving average, exponential smoothing, and neural network autoregression are applied to the disease dataset individually. The gradient boosting model combines the regress values of the above three statistical models to obtain an ensemble model. The results conclude that the forecasting precision of the proposed stacked ensemble model is better than that of the standard gradient boosting model. The ensemble model reduces the prediction errors, root-mean-square error, for the dengue, influenza, and tuberculosis dataset by approximately 30%, 24%, and 25%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.