Drought has been a major limiting factor for rice production. Drought yield QTLs (qDTYs; QTLs = quantitative trait loci) were pyramided into MRQ74 and MR219 to produce drought tolerant lines. In this study, new drought tolerant MRQ74 and MR219 pyramided lines (PLs) were evaluated under drought stress (RS) and non-stress (NS) conditions to evaluate the effects of different qDTYs combinations on morphological and agronomical traits. MRQ74 PLs having qDTY12.1 possessed the best root length (RL) under both RS and NS but the effect was only significant for MR219 PLs under RS. Some qDTYs combinations also found to have consistent effect on the same trait of both populations. PLs with only qDTY12.1 showed the highest grain yield (GY) under RS in both populations which means qDTY12.1 controlled RL and caused higher GY under drought condition. The interaction of major-effect qDTY12.1 with qDTY2.2 also shows significant effect on leaf rolling (LR) of both PL populations. These qDTYs proved to be beneficial in improving traits related to drought tolerance. Selected PLs with qDTY12.1 combinations also found to have better RL and root weight (RW) under RS. Improvement of morphological and agronomical traits led to higher GY of PLs. Therefore, qDTY12.1 either is present singly or in combination with other qDTYs was the best qDTY due to its consistent effect on morphological and agronomical traits and GY across populations under RS and NS.
Colored rice is rich in nutrition and also a good source of valuable genes/quantitative trait loci (QTL) for nutrition, grain quality, and pest and disease resistance traits for use in rice breeding. Genome-wide association analysis using high-density single nucleotide polymorphism (SNP) is useful in precisely detecting QTLs and genes. We carried out genome-wide association analysis in 152 colored rice accessions, using 22,112 SNPs to map QTLs for nutritional, agronomic, and bacterial leaf blight (BLB) resistance traits. Wide variations and normal frequency distributions were observed for most of the traits except anthocyanin content and BLB resistance. The structural and principal component analysis revealed two subgroups. The linkage disequilibrium (LD) analysis showed 74.3% of the marker pairs in complete LD, with an average LD distance of 1000 kb and, interestingly, 36% of the LD pairs were less than 5 Kb, indicating high recombination in the panel. In total, 57 QTLs were identified for ten traits at p < 0.0001, and the phenotypic variance explained (PVE) by these QTLs varied from 9% to 18%. Interestingly, 30 (53%) QTLs were co-located with known or functionally-related genes. Some of the important candidate genes for grain Zinc (Zn) and BLB resistance were OsHMA9, OsMAPK6, OsNRAMP7, OsMADS13, and OsZFP252, and Xa1, Xa3, xa5, xa13 and xa26, respectively. Red rice genotype, Sayllebon, which is high in both Zn and anthocyanin content, could be a valuable material for a breeding program for nutritious rice. Overall, the QTLs identified in our study can be used for QTL pyramiding as well as genomic selection. Some of the novel QTLs can be further validated by fine mapping and functional characterization. The results show that pigmented rice is a valuable resource for mineral elements and antioxidant compounds; it can also provide novel alleles for disease resistance as well as for yield component traits. Therefore, large opportunities exist to further explore and exploit more colored rice accessions for use in breeding.
The introduction of superior grain corn genotypes with high and stable yield (YLD) in most environments is important to increase local production and reduce dependency on imported grain corn. In this study, days to tasseling (DT), plant height, and YLD of 11 grain corn genotypes were observed in 10 environments to evaluate the effects of genotype (G), environment (E), and genotype by environment interactions (GEI) using GGE analysis and the stability of genotypes using stability parameters. In each location, grain corn genotypes were arranged in three replications using a randomized complete block design. An analysis of variance showed that all three traits were highly significant toward G and E factors, whereas GEI showed that only DT and YLD were highly significant. Genotype V14 produced the highest YLD of 10,354 kg/ha, followed by V4 (10,114 kg/ha) and V2 (9797.74 kg/ha). These three genotypes also dominated in seven out of 10 tested environments. With regard to stability ranking, genotype V4 was the most stable genotype, with a big gap difference between the second (V14) and third places (V2). Therefore, V14, V4, and V2 were the most promising genotypes because of their great YLD performance and most stable across tested environments, which can be recommended to farmers for high-scale planting.
Drought and submergence have been the major constraint in rice production. The present study was conducted to develop high-yielding rice lines with tolerance to drought and submergence by introgressing Sub1 into a rice line with drought yield QTL (qDTY; QTL = quantitative trait loci) viz. qDTY3.1 and qDTY12.1 using marker-assisted breeding. We report here the effect of different combinations of Sub1 and qDTY on morpho-physiological, agronomical traits and yield under reproductive stage drought stress (RS) and non-stress (NS) conditions. Lines with outstanding performance in RS and NS trials were also evaluated in vegetative stage submergence stress (VS) trial to assess the tolerance level. The QTL class analysis revealed Sub1 + qDTY3.1 as the best QTL combination affecting the measured traits in RS trial followed by Sub1 + qDTY12.1. The effects of single Sub1, qDTY3.1 and qDTY12.1 were not as superior as when the QTLs are combined, suggesting the positive interaction of Sub1 and qDTY. Best performing lines selected from the RS and NS trials recorded yield advantage up to 4453.69 kg ha−1 and 6954 kg ha−1 over the parents, respectively. The lines were also found having great tolerance to submergence ranging from 80% to 100%, contributed by a lower percentage of shoot elongation and reduction of chlorophyll content after 14 days of VS. These lines could provide yield sustainability to farmers in regions impacted with drought and submergence while serving as important genetic materials for future breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.