Purpose The purpose of this study was to determine the association of AZFc subdeletions (gr/gr, b1/b3 and b2/b3) and deletion of DAZ and CDY1 gene copies with male infertility Methods Three hundred twelve controls, 172 azoospermic and 343 oligozoospermic subjects were subjected to AZFc subdeletion typing by STS PCR. Deletion of DAZ and CDY1 gene copies was done using sequence family variant analysis. Sperm concentration and motility were compared between men with and without AZFc subdeletions. Effect of the AZFc subdeletions on ICSI outcome was evaluated. Results Amongst the three AZFc subdeletions, the frequency of gr/gr was higher in oligozoospermic (10.5 %) and azoospermic (11.6 %) men as compared to controls (5.1 %). In men with AZFc subdeltions, loss of two DAZ and one CDY1 gene copy made them highly susceptible to azoospermia and severe oligozoospermia with OR of 29.7 and 26, respectively. These subdeletions had no effect on ICSI outcome, albeit there were an increased number of poor quality embryos in AZFc subdeleted group. Conclusion AZFc subdeletions are a major risk factor for male infertility in the Indian population. In the subjects with AZFc subdeletions, the deletion of DAZ and CDY1 gene copies increases its susceptibility to azoospermia or severe oligozoospermia. Since these deletions can be vertically transmitted to the future male offspring by ICSI, it will be essential to counsel the couples for the transmission of the genetic defect in the male offspring born after assisted reproduction and the risk of perpetuating infertility in future generation.
Background:Recurrent pregnancy loss is a challenging reproductive problem, and chromosomal anomalies approximately affect 2%–8% of couples with recurrent pregnancy loss. The chromosomal abnormality, especially balanced translocation rearrangement in either parent, is the important cause of recurrent spontaneous abortion.Aims:The aim of this study was to investigate the role and prevalence of chromosomal anomalies in recurrent miscarriages. The results will be helpful for counseling and make the decision for alternative options and precaution for the affected couples and also support to make a national database.Settings and Design:The present retrospective study was carried out in 172 couples (344 individuals) having the history of three or more recurrent spontaneous abortion. The cytogenetic analysis was done in all 344 individuals using G-banding and karyotyping.Results:Out of 172 couples, 17 couples (9.88%) had different types of structural or numerical chromosomal abnormalities. The structural aberrations were observed in 15 (8.72%) couples, and numerical aberrations were seen in 2 (1.16%) couples. Out of 17 couples, 8 (47.05%) had balanced translocations, 2 (11.76%) had the Robertsonian translocation, 5 (29.41%) had the pericentric inversion of chromosome 8, 9, and Y, and only 2 (11.76%) women showed sex chromosome numerical aberrations.Conclusions:Cytogenetic analysis should be an important routine investigation in couples with repeated miscarriages. Cytogenetic analysis is essential and helpful for genetic counseling to take precaution and implementing proper reproductive alternatives. Studies on the genetic basis of pregnancy loss should be taken up to generate data on these issues from different regions.
IntrOductIOnSperm motility is essential factor of fertile men. During fertilization, sperm cells require large amount of energy for their movement of flagella and active functioning. Nearly, 100 mitochondria are present in the midpiece of every mature human spermatozoon to provide energy quickly and effectively for sperm motility [1]. The oxidative phosphorylation of mitochondria generates energy in the form of ATP for flagellar movement of spermatozoa. In mitochondria, Reactive Oxygen Species (ROS) is generated during oxidative phosphorylation and increase the risk of Mitochondrial (mtDNA) damage [2]. The oxidative phosphorylation comprises a series of protein complexes that are encoded by both nuclear genes and mitochondrial genes [3]. Mitochondria contain their own genomic DNA and express independently in matrix of mitochondria. It contains 16569 base pairs that are categorised in 13 genes of respiratory chain complex subunits, along with the 22 tRNAs and 2 rRNAs (12S and 16S) involved in protein synthesis [4]. The mtDNA replicates rapidly by D-loop mechanism without proof-reading and DNA repair mechanisms. So, it enhances mutation rate 10-100 times higher than that of nuclear DNA [5]. Furthermore, sperm cells are susceptible to damage from oxidants because they lack endogenous antioxidants activity and mtDNA is attached to the mitochondrial inner membrane where ROS are continuously generated as byproducts of electron ABStrActIntroduction: Mitochondria and mitochondrial DNA are essential to sperm motility and fertility. It controls growth, development and differentiation through oxidation energy supply. Mitochondrial (mtDNA) deletions or mutation are frequently attributed to defects of sperm motility and finally these deletions lead to sperm dysfunction and causes infertility in male.
Background: Primary amenorrhea is one of the most common disorders seen as gynecological problems in adolescent girls. It refers to the participants who did not attain menarche by the age of 11–15 years. Chromosome abnormalities contribute as one of the etiological factors in patients with primary amenorrhea. Aims: The aim of this study was to evaluate the frequency of chromosomal abnormalities and to investigate the abnormal karyotypes in patients referred with the symptom of primary amenorrhea for better management and counseling. Setting and Design: One hundred and seventy-four cases of primary amenorrhea were referred from the obstetrics and gynecology department to our cytogenetic laboratory for chromosomal analysis. G-banded chromosomes were karyotyped, and chromosomal analysis of all patients was done. Results: Out of 174 patients, we observed 23 (13.22%) participants with abnormal karyotype. In 23 cases of chromosomal abnormalities, 10 cases were sex reversal female (46,XY) and Turner karyotype (45,X) in 6 females. Other numerical and structural abnormalities were also seen such as 47,XXX; 45,X/47,XXX; 45,X/46, X,dic(X); 46,XX, inv (9); 45,X/46,X,i(Xq); 46,X,mar(X); and 45,X/46,XY in the primary amenorrhea cases. Conclusion: This study definitely attests the importance of chromosomal analysis in the etiologic diagnosis of primary amenorrhea patients. Karyotyping will help to counsel and manage the cases of primary amenorrhea in a better way. This study reveals the frequencies and different types of chromosomal abnormalities found in primary amenorrhea individuals and that might help to make the national database on primary amenorrhea in relation to chromosomal aberrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.