This study examined the neural basis of auditory selective attention using functional magnetic resonance imaging. The main hypothesis stated that attending to a particular sound frequency would significantly enhance the neural response within those tonotopic regions of the auditory cortex sensitive to that frequency. To test this prediction, low- and high-frequency sound sequences were interleaved to produce two concurrent auditory streams. Six normally hearing participants either performed a task which required them to attend to one or the other stream or listened passively to the sounds while functional images were acquired using a high-resolution (1.5 mm x 1.5 mm x 2.5 mm) sequence. Two statistical comparisons identified the attention-specific and general effects of enhancement. The first controlled for task-related processes, while the second did not. Results demonstrated frequency-specific, attention-specific enhancement in the response to the attended frequency, but no response suppression for the unattended frequency. Instead, a general effect of suppression was found in several posterior sites, possibly related to resting-state processes. Furthermore, there was widespread general enhancement across auditory cortex when performing the task compared to passive listening. This enhancement did include frequency-sensitive regions, but was not restricted to them. In conclusion, our results show partial support for frequency-specific enhancement.
Attention is known to affect the response properties of sensory neurons in visual cortex. These effects have been traditionally classified into two categories: 1) changes in the gain (overall amplitude) of the response; and 2) changes in the tuning (selectivity) of the response. We performed an extensive series of behavioral measurements using psychophysical reverse correlation to understand whether/how these neuronal changes are reflected at the level of our perceptual experience. This question has been addressed before, but by different laboratories using different attentional manipulations and stimuli/tasks that are not directly comparable, making it difficult to extract a comprehensive and coherent picture from existing literature. Our results demonstrate that the effect of attention on response gain (not necessarily associated with tuning change) is relatively aspecific: it occurred across all the conditions we tested, including attention directed to a feature orthogonal to the primary feature for the assigned task. Sensory tuning, however, was affected primarily by feature-based attention and only to a limited extent by spatially directed attention, in line with existing evidence from the electrophysiological and behavioral literature.
Feature-specific enhancement refers to the process by which selectively attending to a particular stimulus feature specifically increases the response in the same region of the brain that codes that stimulus property. Whereas there are many demonstrations of this mechanism in the visual system, the evidence is less clear in the auditory system. The present functional magnetic resonance imaging (fMRI) study examined this process for two complex sound features, namely frequency modulation (FM) and spatial motion. The experimental design enabled us to investigate whether selectively attending to FM and spatial motion enhanced activity in those auditory cortical areas that were sensitive to the two features. To control for attentional effort, the difficulty of the target-detection tasks was matched as closely as possible within listeners. Locations of FM-related and motion-related activation were broadly compatible with previous research. The results also confirmed a general enhancement across the auditory cortex when either feature was being attended to, as compared with passive listening. The feature-specific effects of selective attention revealed the novel finding of enhancement for the nonspatial (FM) feature, but not for the spatial (motion) feature. However, attention to spatial features also recruited several areas outside the auditory cortex. Further analyses led us to conclude that feature-specific effects of selective attention are not statistically robust, and appear to be sensitive to the choice of fMRI experimental design and localizer contrast.
Adding implicit measures to the PWM may contribute to our understanding of the development of alcohol behaviours in young people. Further research could explore how implicit attitudes develop alongside the shift from reactive to planned behaviour. Statement of contribution What is already known on this subject? Young people's drinking tends to occur in social situations and is driven in part by social reactions within these contexts. The Prototype Willingness Model (PWM) attempts to explain such reactive behaviour as the result of social comparison to risk prototypes, which influence willingness to drink, and subsequent behaviour. Evidence also suggests that risky drinking in young people may be influenced by implicit attitudes towards alcohol, which develop with repeated exposure to alcohol over time. One criticism of the PWM is that prototypes and willingness are usually measured using explicit measures which may not adequately capture young people's spontaneous evaluations of prototypes, or their propensity to act without forethought in a social context. What does this study add? This study is novel in exploring the addition of implicit alcohol attitudes to the social reaction pathway in the model in order to understand more about these reactive constructs. Implicit alcohol attitudes added to the prediction of behaviour, over and above intentions and willingness for university students. For school pupils, willingness was a stronger predictor of behaviour than intentions or implicit attitudes. Findings suggest that adding implicit alcohol attitudes into the PWM might be able to explain the shift from reactive to intentional drinking behaviours with age and experience.
Acknowledgements:The authors are thankful to all the participants who took part in the study. Funding: This project was funded by an Oxford Brookes University Team Teaching FellowshipConflicts of interest: None declared. Running header: Statistics confidence and competence in psychology students Statement of contribution:All authors contributed to creation of the study, implementation, analysis and write up. All authors contributed to and agreed on the final manuscript Word count: 4477, excluding abstract, tables and references Statistics confidence and competence in psychology students 2 From anxiety to confidence: Exploring the measurement of statistics confidence and its relationship with experience, knowledge, and competence within psychology undergraduate students ABSTRACT Psychology students often feel anxious about learning statistics, which can impact their performance. However, less research has explored statistics confidence, which may be an important way to reduce the negative connotations of associating statistics with anxiety. We aimed to explore whether modifying an existing measure of statistics anxiety (the STARS scale) and reframing the questions so students rated their confidence instead, would be associated with competence, prior knowledge and experience. A total of 104 undergraduate students completed an online questionnaire comprising these measures. The factor structure of the STARS scale was predominantly maintained when wording was changed to measure confidence instead of anxiety. Confidence was related to experience and competence, but not knowledge.Two aspects of confidence (interpretation of statistics, and exam confidence) plus initial experiences were significant predictors of competence. Confidence was a mediator of the relationship between experience and competence. These findings suggest statistics confidence can be measured in a similar way to anxiety, and highlight areas that could be addressed to increase competence. Future research is needed to explore the relationship between statistics anxiety and statistics confidence, as well as to determine their individual impact on performance in assessments. Statistics confidence and competence in psychology students3 From anxiety to confidence: Exploring the measurement of statistics confidence and its relationship with experience, knowledge, and competence within psychology undergraduate students
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.