Background Coronavirus-2019 (COVID-2019) is a novel coronavirus known as Acute Respiratory Syndrome (SARS-CoV-2). The premier standard test for SARS-CoV-2 diagnosis is a one-step RT-qPCR method, which requires specific probes and reagents. Therefore, detection on a large scale is expensive and cannot be very accurate. Methods A cost-effective technique based on SYBR green was evaluated in the current study. The specific primers for S and N genes were designed, then performed the cross-reactivity test with other coronavirus and respiratory viruses positive samples. Moreover, the analytical sensitivity test was carried out with 8 dilutions (1:10). Lastly, the SARS-CoV-2 clinical samples (n = 210) were tested by these two methods, and receiver operating characteristic (ROC) analysis was performed to investigate the incremental diagnostic value of each gene in the study methods. Results The two-step method detected up to 6th dilutions of the SARS-CoV-2 samples and did not show any amplification of the positive samples of other respiratory viruses. ROC analysis revealed a diagnostic ability of the two-step method for SARS-CoV-2 with an area under the ROC curve of ≥ 0.7 (P ˂ 0.05) and relatively high sensitivity and specificity. The combination of N and S genes increased the sensitivity up to 88%, specificity up to 86%, and area under the ROC curve up to 0.85 (95% confidence interval (95% CI) 0.72 to 0.93, P = 0.0461). Conclusion Our findings indicated that the two-step method has comparable sensitivity and specificity to the one-step method. Therefore, this method can be considered a potential diagnostic method for diagnosing and monitoring COVID-19 patients. It suggests that when the one-step RT-qPCR method is not available, the two-step RT-qPCR can be used to identify SARS-CoV-2.
Background In the absence of effective antiviral drugs or vaccines, early and accurate detection of SARS-CoV-2 infection is essential to the COVID-19 pandemic. This study developed and evaluated a novel rapid One-Step LAMP assay to directly detect the SARS-CoV-2 RNA from nasopharyngeal (NP) swab samples of patients with suspected SARS-CoV-2 infection living in deprived areas in comparison to One-Step Real-time PCR. Methods Two hundred fifty-four NP swab samples from patients suspected of COVID-19 infection living in deprived western areas of Iran were tested by TaqMan One-Step RT-qPCR and fast One-Step LAMP assays. Tenfold serial dilutions of SARS-CoV-2 RNA standard strain where the viral copy number in each dilution was previously determined using the qPCR and various templates were used to investigate the analytical sensitivity and specificity of the One-Step LAMP assay in triplicate. Also, the efficacy and reliability of the method compared to TaqMan One-Step RT-qPCR were evaluated using SARS-CoV-2 positive and negative clinical samples. Results The results of the One-Step RT-qPCR and One-Step LAMP tests were positive in 131 (51.6%) and 127 (50%) participants, respectively. Based on Cohen’s kappa coefficient (κ), the agreement between the two tests was 97%, which was statistically significant (P < 0.001). The detection limit for the One-Step LAMP assay was 1 × 101 copies of standard SARS-CoV-2 RNA per reaction in less than an hour in triplicates. Negative results in all samples with non-SARS-CoV-2 templates represent 100% specificity. Conclusions The results showed that the One-Step LAMP assay is an efficient consistent technique for detecting SARS-CoV-2 among suspected individuals due to its simplicity, speed, low cost, sensitivity, and specificity. Therefore, it has great potential as a useful diagnostic tool for disease epidemic control, timely treatment, and public health protection, especially in poor and underdeveloped countries.
The HCV Core protein is a multifunctional protein that interacts with many viral and cellular proteins. In addition to the encapsidation of the viral genome, it can disturb various cellular pathways and impede antiviral cellular responses such as interferon (IFN) production. The Core protein can also disrupt the functions of immune cells against HCV. The Core protein helps viral infection persistency by interfering with apoptosis. The Core+1 protein plays a significant role in inducing chronic HCV infection through diverse mechanisms. We review some of the mechanisms by which Core and Core+1 proteins facilitate HCV infection to chronic infection. These proteins could be considered for designing more sufficient treatments and effective vaccines against HCV.
Background: Virus-Like Particles (VLPs) are nanostructures that are similar to their native virus in shape, size, and other morphological features, except that virus-like particles lack a genome. Virus-Like Particles cause a high humoral and cellular immune response due to repetitive structures in their body. Therefore, the use of these particles increases the body's immunity during production and consumption because they lack genomic materials. Several systems may be used to generate VLPs. The choice of production platform depends on several factors, including cost and the need for Post-Translational Modifications that may be necessary to generate an optimal immune response. In addition, plant viruses, due to their structure, are well able to stimulate the mammalian immune system; on the other hand, since they are not able to infect mammals, they can be considered a subset of VLPs. Some VLP-based vaccines and plant viruses have been designed and tested to prevent several infectious diseases; however, some are in the clinical or research phase. Interest in using VLPs to produce vaccines has recently increased due to its advantages over conventional vaccines. In this review, an attempt has been made to compare the advantages and disadvantages of VLP production systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.