For many practical applications, a high computational cost of inference over deep network architectures might be unacceptable. A small degradation in the overall inference accuracy might be a reasonable price to pay for a significant reduction in the required computational resources. In this work, we describe a method for introducing ''shortcuts'' into the DNN feedforward inference process by skipping costly feedforward computations whenever possible. The proposed method is based on the previously described BranchyNet (Teerapittayanon et al., 2016) and the EEnet (Demir, 2019) architectures that jointly train the main network and early exit branches. We extend those methods by attaching branches to pretrained models and, thus, eliminating the need to alter the original weights of the network. We also suggest a new branch architecture based on convolutional building blocks to allow enough training capacity when applied on large DNN's. The proposed architecture includes ''confidence'' heads that are used for predicting the confidence level in the corresponding early exits. By defining adjusted thresholds on these confidence extensions, we can control in real-time the amount of data exiting from each branch and the overall tradeoff between speed and accuracy of our model. In our experiments, we evaluate our method using image datasets (SVHN and CIFAR10) and several DNN architectures (ResNet, DenseNet, VGG) with varied depth. Our results demonstrate that the proposed method enables us to reduce the average inference computational cost and further controlling the tradeoff between the model accuracy and the computations cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.