Thin films of porous silicon (PS), structurally characterized by HR-SEM, were studied using xenon Temperature Programmed Desorption (TPD) as a probe of its inner pores. Geometric hindrance of the depth desorbing population and multiple wall collisions result in a unique double-peak structure of the TPD curve. Surface-diffusion assisted adsorption mechanism into inner pores at 48 K is proposed as the origin of these unique TPD spectra. It is experimentally verified by mild Ne(+) sputtering prior to TPD which preferentially removes Xe population from the top surfaces. A pore-diameter limited desorption kinetic model that takes into account diffusion and pore depth well explains the governing parameters that determine the experimental observations. These results suggest that TPD may be employed as a highly sensitive, non-destructive surface area determination tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.