Lysins are bacteriophage-derived enzymes that degrade bacterial peptidoglycans. Lysin CF-301 is being developed to treat Staphylococcus aureus because of its potent, specific, and rapid bacteriolytic effects. It also demonstrates activity on drug-resistant strains, has a low resistance profile, eradicates biofilms, and acts synergistically with antibiotics. CF-301 was bacteriolytic against 250 S. aureus strains tested including 120 methicillin-resistant S. aureus (MRSA) isolates. In time-kill studies with 62 strains, CF-301 reduced S. aureus by 3-log10 within 30 minutes compared to 6–12 hours required by antibiotics. In bacteremia, CF-301 increased survival by reducing blood MRSA 100-fold within 1 hour. Combinations of CF-301 with vancomycin or daptomycin synergized in vitro and increased survival significantly in staphylococcal-induced bacteremia compared to treatment with antibiotics alone (P < .0001). Superiority of CF-301 combinations with antibiotics was confirmed in 26 independent bacteremia studies. Combinations including CF-301 and antibiotics represent an attractive alternative to antibiotic monotherapies currently used to treat S. aureus bacteremia.
BackgroundIn previous studies, Propionibacterium acnes was cultured from intervertebral disc tissue of ~25% of patients undergoing microdiscectomy, suggesting a possible link between chronic bacterial infection and disc degeneration. However, given the prominence of P. acnes as a skin commensal, such analyses often struggled to exclude the alternate possibility that these organisms represent perioperative microbiologic contamination. This investigation seeks to validate P. acnes prevalence in resected disc cultures, while providing microscopic evidence of P. acnes biofilm in the intervertebral discs.MethodsSpecimens from 368 patients undergoing microdiscectomy for disc herniation were divided into several fragments, one being homogenized, subjected to quantitative anaerobic culture, and assessed for bacterial growth, and a second fragment frozen for additional analyses. Colonies were identified by MALDI-TOF mass spectrometry and P. acnes phylotyping was conducted by multiplex PCR. For a sub-set of specimens, bacteria localization within the disc was assessed by microscopy using confocal laser scanning and FISH.ResultsBacteria were cultured from 162 discs (44%), including 119 cases (32.3%) with P. acnes. In 89 cases, P. acnes was cultured exclusively; in 30 cases, it was isolated in combination with other bacteria (primarily coagulase-negative Staphylococcus spp.) Among positive specimens, the median P. acnes bacterial burden was 350 CFU/g (12 - ~20,000 CFU/g). Thirty-eight P. acnes isolates were subjected to molecular sub-typing, identifying 4 of 6 defined phylogroups: IA1, IB, IC, and II. Eight culture-positive specimens were evaluated by fluorescence microscopy and revealed P. acnes in situ. Notably, these bacteria demonstrated a biofilm distribution within the disc matrix. P. acnes bacteria were more prevalent in males than females (39% vs. 23%, p = 0.0013).ConclusionsThis study confirms that P. acnes is prevalent in herniated disc tissue. Moreover, it provides the first visual evidence of P. acnes biofilms within such specimens, consistent with infection rather than microbiologic contamination.
Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC 90 ) value of Յ0.25 g/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes, and Streptococcus agalactiae were also sensitive to disruption, with MBEC 90 values ranging from 0.25 to 8 g/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component.KEYWORDS biofilm, CF-301, lysin, Staphylococcus aureus O ver 99.9% of bacteria in the biosphere grow within robust and resilient sessile communities called biofilms (1). Biofilm formation is a precisely controlled developmental process initiated by microbial aggregation on abiotic and biotic surfaces. Importantly, biofilms form in human tissues, facilitating serious chronic infections of the upper respiratory tract, intestinal tract, urinary tract, bone, heart valves, middle ear, gingiva, and skin that can lead to serious illness and death (2, 3). Indwelling medical devices, such as intravenous catheters, stents, prosthetic joints, and pacemakers, are frequent sites of biofilm formation and are increasingly associated with morbidity and mortality. In clinical medicine, 65 to 80% of bacterial infections are biofilm associated, costing the health care system billions of dollars each year (4-6).Biofilms are densely packed microbial populations held within DNA, polysaccharide, and/or proteinaceous matrices (7). In the context of human disease, the biofilm matrix helps protect bacteria from innate and adaptive immune defenses and enables up to 1,000-fold increases in antibiotic tolerance compared to tolerance with planktonic bacteria. Biofilm microenvironments favor horizontal transfer of antibiotic resistance genes (8) and drive the inactivation of antibiot...
Cell wall peptidoglycan-anchored surface proteins are essential virulence factors in many gram-positive bacteria. The attachment of these proteins to the peptidoglycan is achieved through a transpeptidation reaction, whereby sortase cleaves a conserved C-terminal LPXTG motif and covalently attaches the protein to the peptidoglycan precursor lipid II. It is unclear how the sorting reaction is regulated spatially and what part sortase localization plays in determining the distribution of surface proteins. This is mainly the result of inadequate immunofluorescence techniques required to resolve these issues in certain bacterial pathogens. Here we describe the utilization of the phage lysin PlyC to permeabilize the cell wall of Streptococcus pyogenes to antibodies, thereby allowing the localization of sortase A using deconvolution immunofluorescence microscopy. We find that sortase localizes within distinct membranal foci, the majority of which are associated with the division septum and colocalize with areas of active M protein anchoring. Sortase distribution to the new septum begins at a very early stage, culminates during septation, and decays after division is completed. This implies that the sorting reaction is a dynamic, highly regulated process, intimately associated with cell division. The ability to study cytoplasmic and membrane antigens using deconvolution immunofluorescence microscopy will facilitate further study of cellular processes in S. pyogenes.immunofluorescence ͉ microscopy ͉ protein sorting ͉ phage lysin ͉ M protein C ell wall anchored surface proteins play a vital role in the pathogenic process of many gram-positive bacteria (1). These proteins all have a conserved C-terminal anchor domain comprised of an LPXTG motif followed by a hydrophobic region and a few positively charged amino acids at the C terminus (2, 3). During protein export, the C-terminal anchor domain is stalled in the secretion channel, leaving the LPXTG motif exposed on the outer surface of the membrane. The transpeptidase sortase then cleaves this motif between the threonine and glycine residues (4) and attaches the freed threonine to the peptidoglycan precursor, lipid II (5). Lipid II then serves as substrate for peptidoglycan synthesis, leading to the covalent attachment of the protein to the cell wall.The important human pathogen Streptococcus pyogenes (6) employs an impressive array of wall-anchored virulence factors that function in immune evasion, adherence, and invasion, among other roles (7). In S. pyogenes, sortase A is the housekeeping sortase and was shown experimentally to anchor M protein, protein F, C5a peptidase (ScpA), and protein G-related ␣2-macroglobulin-binding protein (GRAB) to the cell wall (8). In addition to sortase A, S. pyogenes harbors two specialized sortases, associated with the FCT (fibronectin-binding, collagenbinding T antigen) region. Of these, one is specific for T antigen, a major component of the streptococcal pili (8, 9), while the other recognizes an altered consensus sequence, QVPTGV and ...
Bacteriophage-derived lysins are cell-wall-hydrolytic enzymes that represent a potential new class of antibacterial therapeutics in development to address burgeoning antimicrobial resistance. CF-301, the lead compound in this class, is in clinical development as an adjunctive treatment to potentially improve clinical cure rates of Staphylococcus aureus bacteremia and infective endocarditis (IE) when used in addition to antibiotics. In order to profile the activity of CF-301 in a clinically relevant milieu, we assessed its in vitro activity in human blood versus in a conventional testing medium (cation-adjusted Mueller-Hinton broth [caMHB]). CF-301 exhibited substantially greater potency (32 to Ն100-fold) in human blood versus caMHB in three standard microbiologic testing formats (e.g., broth dilution MICs, checkerboard synergy, and time-kill assays). We demonstrated that CF-301 acted synergistically with two key human blood factors, human serum lysozyme (HuLYZ) and human serum albumin (HSA), which normally have no nascent antistaphylococcal activity, against a prototypic methicillin-resistant S. aureus (MRSA) strain (MW2). Similar in vitro enhancement of CF-301 activity was also observed in rabbit, horse, and dog (but not rat or mouse) blood. Two well-established MRSA IE models in rabbit and rat were used to validate these findings in vivo by demonstrating comparable synergistic efficacy with standard-of-care anti-MRSA antibiotics at Ͼ100-fold lower lysin doses in the rabbit than in the rat model. The unique properties of CF-301 that enable bactericidal potentiation of antimicrobial activity via activation of "latent" host factors in human blood may have important therapeutic implications for durable improvements in clinical outcomes of serious antibiotic-resistant staphylococcal infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.