This work entails a comparative study of both Li and synthetic graphite electrodes in electrolyte solutions based on ethylene and dimethyl carbonates (EC-DMC) and the impact of the salt used [from the LiAsF,, LiC1O4, LiPF,, LiBF4, and LiN(SO2CF3)2 listi. The presence of some additives in solutions (e.g., Li2CO3, C02, tributylamine) and the effect of the particle size of the carbon on the electrode's behavior were investigated. The correlation between the surface chemistry, the morphology, and the performance of Li and graphite electrodes was explored using surface sensitive Fourier transform infrared and x-ray and photoelectron spectroscopies, impedance spectroscopy, x-ray diffraction and scanning electron microscopy in conjunction with standard electrochemical techniques. Synthetic graphite anodes could be cycled (Li intercalation-deintercalation) hundreds of times at a capacity close to the optimal (x -1 in LiC6) in EC-DMC solutions due to the formation of highly stable and passivating surface films in which EC reduction products such as (CH2OCO2Li), are the major constituents. The cycling efficiency of Li metal anodes in these solutions, however, is lower than that obtained in ethereal solutions and seems to be too low for Li-metal liquid electrolyte, rechargeable battery application. The connection between the solution composition and the electrode's performance is discussed.
Despite the proclamation of Lowenstam and Weiner that crustaceans are the ''champions of mineral mobilization and deposition of the animal kingdom,'' relatively few proteins from the two main calcification sites in these animals, i.e., the exoskeleton and the transient calcium storage organs, have been identified, sequenced, and their roles elucidated. Here, a 65-kDa protein (GAP 65) from the gastrolith of the crayfish, Cherax quadricarinatus, is fully characterized and its function in the mineralization of amorphous calcium carbonate (ACC) of the extracellular matrix is demonstrated. GAP 65 is a negatively charged glycoprotein that possesses three predicted domains: a chitin-binding domain 2, a low-density lipoprotein receptor class A domain, and a polysaccharide deacetylase domain. Expression of GAP 65 was localized to columnar epithelial cells of the gastrolith disk during premolt. In vivo administration of GAP 65 dsRNA resulted in a significant reduction of GAP 65 transcript levels in the gastrolith disk. Such gene silencing also caused dramatic structural and morphological deformities in the chitinous-ACC extracellular matrix structure. ACC deposited in these gastroliths appeared to be sparsely packed with large elongated cavities compared with the normal gastrolith, where ACC is densely compacted. ACC spherules deposited in these gastroliths are significantly larger than normal. GAP 65, moreover, inhibited calcium carbonate crystallization in vitro and stabilized synthetic ACC. Thus, GAP 65 is the first protein shown to have dual function, involved both in extracellular matrix formation and in mineral deposition during biomineralization.amorphous calcium carbonate (ACC) ͉ biomineralization ͉ RNAi ͉ Crustacea
Mobilization of calcium during the molt cycle from the cuticle to transient calcium deposits is widely spread in crustaceans. The dynamics of calcium transport to transient calcium deposits called gastroliths and to the cuticle over the course of the molt cycle were studied in the crayfish Cherax quadricarinatus. In this species, calcium was deposited in the gastroliths during premolt and transported back to the cuticle during postmolt, shown by digital X-ray radiograph analysis. The predominant mineral in the crayfish is amorphous calcium carbonate embedded in an organic matrix composed mainly of chitin. Scanning electron micrographs of the cuticle during premolt showed that the endocuticle and parts of the exocuticle were the source of most of the labile calcium, while the epicuticle did not undergo degradation and remained mineralized throughout the molt cycle. The gastroliths are made of concentric layers of amorphous calcium carbonate intercalated between chitinous lamella. Measurements of pH and calcium levels during gastrolith deposition showed that calcium concentrations in the gastroliths, stomach, and muscle were about the same (10 to 11 mmol l(-1)). On the other hand, pH varied greatly, from 8.7+/-0.15 in the gastrolith cavity through 7.6+/-0.2 in muscle to 6.9+/-0.5 in the stomach.
Monosex culture, common in animal husbandry, enables gender-specific management. Here, production of all-female prawns (Macrobrachium rosenbergii) was achieved by a novel biotechnology comprising three steps: (a) A single injection of suspended hypertrophied androgenic gland cells caused fully functional sex reversal of females into "neo-males" bearing the WZ genotype; (b) crossing neo-males with normal females (WZ) yielded genomically validated WW females; and (c) WW females crossed with normal males (ZZ) yielded all-female progeny. This is the first sustainable biotechnology for large-scale all-female crustacean aquaculture. The approach is particularly suited to species in which females are superior to males and offers seedstock protection, thereby ensuring a quality seed supply. Our technology will thus revolutionize not only the structure of the crustacean aquaculture industry but can also be applied to other sectors. Finally, the production of viable and reproducible females lacking the Z chromosome questions its role, with respect to sexuality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.