Sadness is generally seen as a negative emotion, a response to distressing and adverse situations. In an aesthetic context, however, sadness is often associated with some degree of pleasure, as suggested by the ubiquity and popularity, throughout history, of music, plays, films and paintings with a sad content. Here, we focus on the fact that music regarded as sad is often experienced as pleasurable. Compared to other art forms, music has an exceptional ability to evoke a wide-range of feelings and is especially beguiling when it deals with grief and sorrow. Why is it, then, that while human survival depends on preventing painful experiences, mental pain often turns out to be explicitly sought through music? In this article we consider why and how sad music can become pleasurable. We offer a framework to account for how listening to sad music can lead to positive feelings, contending that this effect hinges on correcting an ongoing homeostatic imbalance. Sadness evoked by music is found pleasurable: (1) when it is perceived as non-threatening; (2) when it is aesthetically pleasing; and (3) when it produces psychological benefits such as mood regulation, and empathic feelings, caused, for example, by recollection of and reflection on past events. We also review neuroimaging studies related to music and emotion and focus on those that deal with sadness. Further exploration of the neural mechanisms through which stimuli that usually produce sadness can induce a positive affective state could help the development of effective therapies for disorders such as depression, in which the ability to experience pleasure is attenuated.
Several studies comparing adult musicians and non-musicians have shown that music training is associated with brain differences. It is unknown, however, whether these differences result from lengthy musical training, from pre-existing biological traits, or from social factors favoring musicality. As part of an ongoing 5-year longitudinal study, we investigated the effects of a music training program on the auditory development of children, over the course of two years, beginning at age 6-7. The training was group-based and inspired by El-Sistema. We compared the children in the music group with two comparison groups of children of the same socio-economic background, one involved in sports training, another not involved in any systematic training. Prior to participating, children who began training in music did not differ from those in the comparison groups in any of the assessed measures. After two years, we now observe that children in the music group, but not in the two comparison groups, show an enhanced ability to detect changes in tonal environment and an accelerated maturity of auditory processing as measured by cortical auditory evoked potentials to musical notes. Our results suggest that music training may result in stimulus specific brain changes in school aged children.
Several studies comparing adult musicians and nonmusicians have shown that music training is associated with structural brain differences. It is not been established, however, whether such differences result from pre-existing biological traits, lengthy musical training, or an interaction of the two factors, or if comparable changes can be found in children undergoing music training. As part of an ongoing longitudinal study, we investigated the effects of music training on the developmental trajectory of children's brain structure, over two years, beginning at age 6. We compared these children with children of the same socio-economic background but either involved in sports training or not involved in any systematic after school training. We established at the onset that there were no pre-existing structural differences among the groups. Two years later we observed that children in the music group showed (1) a different rate of cortical thickness maturation between the right and left posterior superior temporal gyrus, and (2) higher fractional anisotropy in the corpus callosum, specifically in the crossing pathways connecting superior frontal, sensory, and motor segments. We conclude that music training induces macro and microstructural brain changes in school-age children, and that those changes are not attributable to pre-existing biological traits.
Playing a musical instrument engages various sensorimotor processes and draws on cognitive capacities collectively termed executive functions. However, while music training is believed to associated with enhancements in certain cognitive and language abilities, studies that have explored the specific relationship between music and executive function have yielded conflicting results. As part of an ongoing longitudinal study, we investigated the effects of music training on executive function using fMRI and several behavioral tasks, including the Color-Word Stroop task. Children involved in ongoing music training (N = 14, mean age = 8.67) were compared with two groups of comparable general cognitive abilities and socioeconomic status, one involved in sports (“sports” group, N = 13, mean age = 8.85) and another not involved in music or sports (“control” group, N = 17, mean age = 9.05). During the Color-Word Stroop task, children with music training showed significantly greater bilateral activation in the pre-SMA/SMA, ACC, IFG, and insula in trials that required cognitive control compared to the control group, despite no differences in performance on behavioral measures of executive function. No significant differences in brain activation or in task performance were found between the music and sports groups. The results suggest that systematic extracurricular training, particularly music-based training, is associated with changes in the cognitive control network in the brain even in the absence of changes in behavioral performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.