Background: Bovine tuberculosis (bTB) is a costly epidemiologically complex, multi-host, endemic disease. Lack of understanding of transmission dynamics may undermine eradication efforts. Pathogen whole genome sequencing improves epidemiological inferences, providing a means to determine the relative importance of inter- and intra- species host transmission for disease persistence. We sequenced an exceptional data set of 619 Mycobacterium bovis isolates from badgers and cattle in a 100km2 bTB hotspot in Northern Ireland. Historical molecular subtyping data permitted the targeting of an endemic pathogen lineage, whose long-term persistence provided a unique opportunity to study disease transmission dynamics in unparalleled detail. Additionally, to assess whether badger population genetic structure was associated with the spatial distribution of pathogen genetic diversity, we microsatellite genotyped hair samples from 769 badgers trapped in this area. Results: Graph transmission tree methods and structured coalescent analyses indicated the majority of bacterial diversity was found in the local cattle population. Results pointed to transmission from cattle to badger being more common than badger to cattle. Furthermore, the presence of significant badger population genetic structure in the landscape was not associated with the spatial distribution of M. bovis genetic diversity, suggesting that badger-to-badger transmission may not be a key determinant of disease persistence. Significance: Our data were consistent with badgers playing a smaller role in the maintenance of M. bovis infection in this study site, compared to cattle. Comparison to other areas suggests that M. bovis transmission dynamics are likely to be context dependent, and the role of wildlife difficult to generalise.
Brucellosis is a major zoonotic infection in Kazakhstan. However, there is limited data on its incidence in humans and animals, and the genetic diversity of prevalent strains is virtually unstudied. Additionally, there is no detailed overview of Kazakhstan brucellosis control and eradication programs. Here, we analyzed brucellosis epidemiological data, and assessed the effectiveness of eradication strategies employed over the past 70 years to counteract this infection. We also conducted multiple loci variable-number tandem repeat analysis (MLVA) of Brucella abortus strains found in Kazakhstan. We analyzed official data on the incidence of animal brucellosis in Kazakhstan. The records span more than 70 years of anti-brucellosis campaigns, and contain a brief description of the applied control strategies, their effectiveness, and their impact on the incidence in humans. The MLVA-16 method was used to type 94 strains of B. abortus and serial passages of B. abortus 82, a strain used in vaccines. MLVA-8 and MLVA-11 analyses clustered strains into a total of four and seven genotypes, respectively; it is the first time that four of these genotypes have been described. MLVA-16 analysis divided strains into 28 distinct genotypes having genetic similarity coefficient that varies from 60 to100% and a Hunter & Gaston diversity index of 0.871. MST analysis reconstruction revealed clustering into "Kazakhstani-Chinese (Central Asian)", "European" and "American" lines. Detection of multiple genotypes in a single outbreak confirms that poorly controlled trade of livestock plays a crucial role in the spread of infection. Notably, the MLVA-16 profile of the B. abortus 82 strain was unique and did not change during 33 serial passages. MLVA genotyping may thus be useful for epidemiological monitoring of brucellosis, and for tracking the source(s) of infection. We suggest that countrywide application of MLVA genotyping would improve the control of brucellosis in Kazakhstan.
Bovine tuberculosis (bTB) is a costly, epidemiologically complex, multi-host, endemic disease. Lack of understanding of transmission dynamics may undermine eradication efforts. Pathogen whole-genome sequencing improves epidemiological inferences, providing a means to determine the relative importance of inter- and intra-species host transmission for disease persistence. We sequenced an exceptional data set of 619 Mycobacterium bovis isolates from badgers and cattle in a 100 km2 bTB ‘hotspot’ in Northern Ireland. Historical molecular subtyping data permitted the targeting of an endemic pathogen lineage, whose long-term persistence provided a unique opportunity to study disease transmission dynamics in unparalleled detail. Additionally, to assess whether badger population genetic structure was associated with the spatial distribution of pathogen genetic diversity, we microsatellite genotyped hair samples from 769 badgers trapped in this area. Birth death models and TransPhylo analyses indicated that cattle were likely driving the local epidemic, with transmission from cattle to badgers being more common than badger to cattle. Furthermore, the presence of significant badger population genetic structure in the landscape was not associated with the spatial distribution of M. bovis genetic diversity, suggesting that badger-to-badger transmission is not playing a major role in transmission dynamics. Our data were consistent with badgers playing a smaller role in transmission of M. bovis infection in this study site, compared to cattle. We hypothesize, however, that this minor role may still be important for persistence. Comparison to other areas suggests that M. bovis transmission dynamics are likely to be context dependent, with the role of wildlife being difficult to generalize.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.