Host defense peptides such as defensins are components of innate immunity and have retained antibiotic activity throughout evolution. Their activity is thought to be due to amphipathic structures, which enable binding and disruption of microbial cytoplasmic membranes. Contrary to this, we show that plectasin, a fungal defensin, acts by directly binding the bacterial cell-wall precursor Lipid II. A wide range of genetic and biochemical approaches identify cell-wall biosynthesis as the pathway targeted by plectasin. In vitro assays for cell-wall synthesis identified Lipid II as the specific cellular target. Consistently, binding studies confirmed the formation of an equimolar stoichiometric complex between Lipid II and plectasin. Furthermore, key residues in plectasin involved in complex formation were identified using nuclear magnetic resonance spectroscopy and computational modeling.
The spatial organization of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds was investigated in the present study. Wound biopsy specimens were obtained from patients diagnosed as having chronic venous leg ulcers, and bacterial aggregates in these wounds were detected and located by the use of peptide nucleic acid-based fluorescence in situ hybridization and confocal laser scanning microscopy (CLSM). We acquired CLSM images of multiple regions in multiple sections cut from five wounds containing P. aeruginosa and five wounds containing S. aureus and measured the distance of the bacterial aggregates to the wound surface. The distance of the P. aeruginosa aggregates to the wound surface was significantly greater than that of the S. aureus aggregates, suggesting that the distribution of the bacteria in the chronic wounds was nonrandom. The results are discussed in relation to our recent finding that swab culturing techniques may underestimate the presence of P. aeruginosa in chronic wounds and in relation to the hypothesis that P. aeruginosa bacteria located in the deeper regions of chronic wounds may play an important role in keeping the wounds arrested in a stage dominated by inflammatory processes.
Alanine scanning mutagenesis has been used to identify specific side chains of insulin which strongly influence binding to the insulin receptor. A total of 21 new insulin analog constructs were made, and in addition 7 high pressure liquid chromatography-purified analogs were tested, covering alanine substitutions in positions B1, B2, B3, B4, B8, B9, B10, B11, B12, B13, B16, B17, B18, B20, B21, B22, B26, A4, A8, A9, A12, A13, A14, A15, A16, A17, A19, and A21. Binding data on the analogs revealed that the alanine mutations that were most disruptive for binding were at positions TyrA19, GlyB8, LeuB11, and GluB13, resulting in decreases in affinity of 1,000-, 33-, 14-, and 8-fold, respectively, relative to wild-type insulin. In contrast, alanine substitutions at positions GlyB20, ArgB22, and SerA9 resulted in an increase in affinity for the insulin receptor. The most striking finding is that B20Ala insulin retains high affinity binding to the receptor. GlyB20 is conserved in insulins from different species, and in the structure of the B-chain it appears to be essential for the shift from the ␣-helix B8 -B19 to the -turn B20 -B22. Thus, replacing GlyB20 with alanine most likely modifies the structure of the B-chain in this region, but this structural change appears to enhance binding to the insulin receptor.Insulin mediates its effects by binding to the insulin receptor in the plasma membrane of target cells. The molecular mechanisms for insulin interaction with the receptor are not fully understood. The crystal structure of the insulin molecule has been known for more than 25 years (1), but it remains an open question whether the structure of insulin that binds to the receptor is similar to the crystal structure. Until the structure of bound insulin and the side chains that are actually involved in binding is identified by co-crystallization of the receptor and ligand, more information about the binding domain on insulin can be obtained using mutational approaches.The binding domain of the insulin molecule has been studied by investigating receptor binding of a number of insulins from different animal species as well as chemically modified and more recently genetically engineered insulins (2-4). These studies have provided experimental support for a model in which invariant residues from both A and B chains form a surface that binds to the insulin receptor. The putative binding domain comprises a number of residues overlapping the dimerforming surface (ValB12, TyrB16, GlyB23, PheB24, PheB25, TyrB26, GlyA1, GlnA5, TyrA19, and AsnA21) and some of the residues buried beneath the COOH terminus of the B-chain (IleA2, ValA3, GluA4) (2). Cross-linking studies with an azidophenylalanine-substituted analog have shown that one of these residues, PheB25, comes into close proximity to the insulin receptor upon binding (5).Recently, a second binding site has been proposed, involving residues LeuA13 and LeuB17 (6, 7). A biphasic binding reaction involving this second binding site could explain the negative cooperativity phenomen...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.