SummaryMreB proteins of Escherichia coli , Bacillus subtilis and Caulobacter crescentus form actin-like cables lying beneath the cell surface. The cables are required to guide longitudinal cell wall synthesis and their absence leads to merodiploid spherical and inflated cells prone to cell lysis. In B. subtilis and C. crescentus , the mreB gene is essential. However, in E. coli , mreB was inferred not to be essential. Using a tight, conditional gene depletion system, we systematically investigated whether the E. coli mreBCD -encoded components were essential. We found that cells depleted of mreBCD became spherical, enlarged and finally lysed. Depletion of each mre gene separately conferred similar gross changes in cell morphology and viability. Thus, the three proteins encoded by mre-BCD are all essential and function in the same morphogenetic pathway. Interestingly, the presence of a multicopy plasmid carrying the ftsQAZ genes suppressed the lethality of deletions in the mre operon. Using GFP and cell fractionation methods, we showed that the MreC and MreD proteins were associated with the cell membrane. Using a bacterial two-hybrid system, we found that MreC interacted with both MreB and MreD. In contrast, MreB and MreD did not interact in this assay. Thus, we conclude that the E. coli Mre-BCD form an essential membrane-bound complex. Curiously, MreB did not form cables in cell depleted for MreC, MreD or RodA, indicating a mutual interdependency between MreB filament morphology and cell shape. Based on these and other observations we propose a model in which the membrane-associated MreBCD complex directs longitudinal cell wall synthesis in a process essential to maintain cell morphology.
Host defense peptides such as defensins are components of innate immunity and have retained antibiotic activity throughout evolution. Their activity is thought to be due to amphipathic structures, which enable binding and disruption of microbial cytoplasmic membranes. Contrary to this, we show that plectasin, a fungal defensin, acts by directly binding the bacterial cell-wall precursor Lipid II. A wide range of genetic and biochemical approaches identify cell-wall biosynthesis as the pathway targeted by plectasin. In vitro assays for cell-wall synthesis identified Lipid II as the specific cellular target. Consistently, binding studies confirmed the formation of an equimolar stoichiometric complex between Lipid II and plectasin. Furthermore, key residues in plectasin involved in complex formation were identified using nuclear magnetic resonance spectroscopy and computational modeling.
Dynamic protein phosphorylation is a fundamental mechanism regulating biological processes in all organisms. Protein phosphatase 2A (PP2A) is the main source of phosphatase activity in the cell, but the molecular details of substrate recognition are unknown. Here, we report that a conserved surface-exposed pocket on PP2A regulatory B56 subunits binds to a consensus sequence on interacting proteins, which we term the LxxIxE motif. The composition of the motif modulates the affinity for B56, which in turn determines the phosphorylation status of associated substrates. Phosphorylation of amino acid residues within the motif increases B56 binding, allowing integration of kinase and phosphatase activity. We identify conserved LxxIxE motifs in essential proteins throughout the eukaryotic domain of life and in human viruses, suggesting that the motifs are required for basic cellular function. Our study provides a molecular description of PP2A binding specificity with broad implications for understanding signaling in eukaryotes.
The mechanism of prokaryotic chromosome segregation is not known. MreB, an actin homolog, is a shapedetermining factor in rod-shaped prokaryotic cells. Using immuno¯uorescence microscopy we found that MreB of Escherichia coli formed helical ®laments located beneath the cell surface. Flow cytometric and cytological analyses indicated that MreB-depleted cells segregated their chromosomes in pairs, consistent with chromosome cohesion. Overexpression of wildtype MreB inhibited cell division but did not perturb chromosome segregation. Overexpression of mutant forms of MreB inhibited cell division, caused abnormal MreB ®lament morphology and induced severe localization defects of the nucleoid and of the oriC and terC chromosomal regions. The chromosomal terminus regions appeared cohered in both MreBdepleted cells and in cells overexpressing mutant forms of MreB. Our observations indicate that MreB ®laments participate in directional chromosome movement and segregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.