This paper introduces a novel feature detector based only on information embedded inside a CNN trained on standard tasks (e.g. classification). While previous works already show that the features of a trained CNN are suitable descriptors, we show here how to extract the feature locations from the network to build a detector. This information is computed from the gradient of the feature map with respect to the input image. This provides a saliency map with local maxima on relevant keypoint locations. Contrary to recent CNN-based detectors, this method requires neither supervised training nor finetuning. We evaluate how repeatable and how 'matchable' the detected keypoints are with the repeatability and matching scores. Matchability is measured with a simple descriptor introduced for the sake of the evaluation. This novel detector reaches similar performances on the standard evaluation HPatches dataset, as well as comparable robustness against illumination and viewpoint changes on Webcam and photo-tourism images. These results show that a CNN trained on a standard task embeds feature location information that is as relevant as when the CNN is specifically trained for feature detection.
Most of the research effort on image-based place recognition is designed for urban environments. In bucolic environments such as natural scenes with low texture and little semantic content, the main challenge is to handle the variations in visual appearance across time such as illumination, weather, vegetation state or viewpoints. The nature of the variations is different and this leads to a different approach to describing a bucolic scene. We introduce a global image descriptor computed from its semantic and topological information. It is built from the wavelet transforms of the image semantic edges. Matching two images is then equivalent to matching their semantic edge descriptors. We show that this method reaches state-ofthe-art image retrieval performance on two multi-season environment-monitoring datasets: the CMU-Seasons and the Symphony Lake dataset. It also generalises to urban scenes on which it is on par with the current baselines NetVLAD and DELF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.