International audienceThis study examined the effects of traversing cracks of concrete on chloride diffusion. Three different concretes were tested: one ordinary concrete (OC) and two high performance concretes with two different mix designs (HPC and HPCSF, with silica fume) to show the influence of the water/cement ratio and silica fume addition. Cracks with average widths ranging from 30 to 250 mu m, were induced using a splitting tensile test. Chloride diffusion coefficients of concrete were evaluated using a steady-state migration test. The results showed that the diffusion coefficient of uncracked HPCSF was less than HPC and OC, but the cracking changed the material behavior in terms of chloride diffusion. The diffusion coefficient increased with the increasing crack width, and this trend was present for all three concretes. The diffusion coefficient through the crack D-cr was not dependent of material parameters and becomes constant when the crack width is higher than similar to 80 mu m, where the value obtained was the diffusion coefficient in free solution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.