The objective of this study was to propose a mathematical regression model to estimate the exploitation flow rate of a water borehole from geophysical parameters in the midst of a fissured basement in the central-eastern part of Côte d'Ivoire. The data of the study are both hydrogeological and geophysical parameters from one hundred and eleven (111) data sheets of (111) water and geophysical boreholes. Two methods were used. The Normal Principal Component Analysis (NPCA) method applied to the data made it possible to select the explanatory variables (geophysical parameters) for borehole productivity. The multiple linear regression method subsequently made it possible to propose a mathematical model capable of estimating the exploitation rate from the geophysical parameters. The results indicate a very strong correlation (0.87) between longitudinal conductivity and flow rate, with flow rate and apparent resistivity negatively correlated. The multiple linear regression method highlighted two relevant explanatory variables, longitudinal conductivity and apparent resistivity. These two geophysical parameters contributed to a mathematical model in the form
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.