Life cycle thinking is increasingly seen as a key concept for ensuring a transition towards more sustainable production and consumption patterns. As food production systems and consumption patterns are among the leading drivers of impacts on the environment, it is important to assess and improve food-related supply chains as much as possible. Over the years, life cycle assessment has been used extensively to assess agricultural systems and food processing and manufacturing activities, and compare alternatives "from field to fork" and through to food waste management. Notwithstanding the efforts, several methodological aspects of life cycle assessment still need further improvement in order to ensure adequate and robust support for decision making in both business and policy development contexts. This paper discusses the challenges for life cycle assessment arising from the complexity of food systems, and recommends research priorities for both scientific development and improvements in practical implementation. In summary, the intrinsic variability of food production systems requires dedicated modelling approaches, including addressing issues related to: the distinction between technosphere and ecosphere; the most appropriate functional unit; the multi-functionality of biological systems; and the modelling of the emissions and how this links with life cycle impact assessment. Also, data availability and interpretation of the results are two issues requiring further attention, including how to account for consumer behaviour.
Preamble:In this series of two papers the methodological aspects related to the assessment of freshwater resources use in LCA are discussed (Part I) and the operational method and characterisation factors suggested are illustrated for a case study of broccoli produced in the UK and Spain (Part II). AbstractBackground, Aim and Scope. Fresh water is a basic resource for humans; however, its link to human health is seldom related to lack of physical access to sufficient fresh water, but rather to poor distribution and access to safe water supplies. On the other hand, fresh water availability for aquatic ecosystems is often reduced due to competition with human uses, potentially leading to impacts on ecosystem quality. This paper summarises how this specific resource use can be dealt with in LCA. Main Features. The main quantifiable impact pathways linking freshwater use to the available supply are identified, leading to definition of the flows requiring quantification in the LCI. Results. The LCI needs to distinguish between and quantify evaporative and non-evaporative uses of 'blue' and 'green' water, along with land use changes leading to changes in the availability of fresh water. Suitable indicators are suggested for the two main impact pathways (namely freshwater ecosystem impact, FEI, and freshwater depletion, FD) and operational characterisation factors are provided for a range of countries and situations. For FEI, indicators relating current freshwater use to the available freshwater resources (with and without specific consideration of water ecosystem requirements) are suggested. For FD, the parameters required for evaluation of the commonly used Abiotic Depletion Potentials (ADP) are explored.Discussion. An important value judgement when dealing with water use impacts is the omission or consideration of nonevaporative uses of water as impacting ecosystems. We suggest considering only evaporative uses as a default procedure, although more precautionary approaches (e.g. an 'Egalitarian' approach) may also include non-evaporative uses. Variation in seasonal river flows is not captured in the approach suggested for FEI, even though abstractions during droughts may have dramatic consequences for ecosystems; this has been considered beyond the scope of LCA. Conclusions. The approach suggested here improves the representation of impacts associated with freshwater use in LCA. The information required by the approach is generally available to LCA practitioners Recommendations and Perspectives. The widespread use of the approach suggested here will require some development (and consensus) by LCI database developers. Linking the suggested midpoint indicators for FEI to a damage approach will require further analysis of the relationship between FEI indicators and ecosystem health.
International audienceAs compost use in agriculture increases, there is an urgent need to evaluate the specific environmental benefits and impacts as compared with other types of fertilizers and soil amendments. While the environmental impacts associated with compost production have been successfully assessed in previous studies, the assessment of the benefits of compost on plant and soil has been only partially included in few published works. In the present study, we reviewed the recent progresses made in the quantification of the positive effects associated to biowaste compost use on land by using life cycle assessment (LCA). A total of nine environmental benefits were identified in an extensive literature review and quantitative figures for each benefit were drawn and classified into short-, mid-, and long-term. The major findings are the following: (1) for nutrient supply and carbon sequestration, the review showed that both quantification and impact assessment could be performed, meaning that these two benefits should be regularly included in LCA studies. (2) For pest and disease suppression, soil workability, biodiversity, crop nutritional quality, and crop yield, although the benefits were proved, quantitative figures could not be provided, either because of lack of data or because the benefits were highly variable and dependent on specific local conditions. (3) The benefits on soil erosion and soil moisture could be quantitatively addressed, but suitable impact assessment methodologies were not available. (4) Weed suppression was not proved. Different research efforts are required for a full assessment of the benefits, apart from nutrient supply and carbon sequestration; additional impact categories—dealing with phosphorus resources, biodiversity, soil losses, and water depletion—may be needed for a comprehensive assessment of compost application. Several of the natural mechanisms identified and the LCA procedures discussed in the paper could be extensible to other organic fertilizers and compost from other feedstocks
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.