Bismuth ferrite (BFO) is the drosophila of research in multiferroic materials due to its simultaneous magnetic and electric ordering at room temperature. The unfortunate detail is its antiferromagnetic ordering, which practically cancels magnetization and magnetoelectric coupling of the crystals. To induce finite coupling, dopants have been introduced with a certain success so far. Nanoparticles (NPs) can additionally constrain the formation of the magnetic cycloid in BFO due to size confinement. Doping nanoparticles can thus potentially provide a sizeable magnetization of BFO, making applications in computer memories and hyperthermia cancer treatment feasible. We show that the codoping of BFO NPs by Ba and Mn balances the electrochemical equilibrium, reduces the particle size, and shifts the magnetic phase transition to lower temperatures. The ferroelectric properties are retained and the remanent magnetization is increased by 1 order of magnitude: Bi 0.95 Ba 0.05 Fe 0.95 Mn 0.05 O 3 possesses a remanent magnetization of 0.277 Am 2 /kg. Our Mossbauer studies reveal that two effects drive this increase: partial destruction of the spin cycloid due to Mn and increased spin canting due to Ba doping inducing local stress fields. This dopant combination and particular concentration improve the effective magnetization value exceptionally well.
The ferroelectricity of multivalent codoped Bismuth ferrite (BiFeO3; BFO) nanoparticles (NPs) is revealed and utilized for photocatalysis, exploiting their narrow electronic bandgap. The photocatalytic activity of ferroelectric photocatalysts BiFe0.95Mn0.05O3 (BFM) NPs and mono‐, di‐, or tri‐valent cations (Ag+, Ca2+, Dy3+; MDT) coincorporated BFM NPs are studied under ultrasonication and in acidic conditions. It is found that such doping enhances the photocatalytic activity of the ferroelectric NPs approximately three times. The correlation of the photocatalytic activity with structural, optical, and electrical properties of the doped NPs is established. The increase of spontaneous polarization by the mono‐ and tri‐valent doping is one of the major factors in enhancing the photocatalytic performance along with other factors such as stronger light absorption in the visible range, low recombination rate of charge carriers, and larger surface area of NPs. A‐site doping of BFO NPs by divalent elements suppresses the polarization, whereas trivalent (Dy3+) and monovalent (Ag+) cations provide an increase of polarization. The depolarization field in these single domain NPs acts as a driving force to mitigate recombination of the photoinduced charge carriers.
The escalated photocatalytic (PC) efficiency of the visible light absorber Ba-doped BiFe0.95Mn0.05O3 (BFM) nanoparticles (NPs) as compared to BiFeO3 (BFO) NPs is reported for the degradation of the organic pollutants rhodamine B and methyl orange.
Ionic engineering is exploited to substitute Bi cations in BiFe0.95Mn0.05O3 NPs (BFM) with rare-earth (RE) elements (Nd, Gd, and Dy). The sol-gel synthesized RE-NPs are tested for their magnetic hyperthermia potential. RE-dopants alter the morphology of BFM NPs from elliptical to rectangular to irregular hexagonal for Nd, Gd, and Dy doping, respectively. The RE-BFM NPs are ferroelectric and show larger piezoresponse than the pristine BFO NPs. There is an increase of the maximum magnetization at 300 K of BFM up to 550% by introducing Gd. In hyperthermia tests, 3 mg/ml dispersion of NPs in water and agar could increase the temperature of the dispersion up to ∼39°C under an applied AC magnetic field of 80 mT. Although Gd doping generates the highest increment in magnetization of BFM NPs, the Dy-BFM NPs show the best hyperthermia results. These findings show that RE-doped BFO NPs are promising for hyperthermia and other biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.