Background: Adequate irrigation of open musculoskeletal injuries is considered the standard of care to decrease bacterial load and other contaminants. While the benefit of debris removal compared with the risk of further seeding by high-pressure lavage has been studied, the effects of irrigation on muscle have been infrequently reported. Our aim in the present study was to assess relative damage to muscle by pulsatile lavage compared with bulb-syringe irrigation. Methods: In an animal model of heterotopic ossification, 24 Sprague-Dawley rats underwent hindlimb blast amputation via detonation of a submerged explosive, with subsequent through-the-knee surgical amputation proximal to the zone of injury. All wounds were irrigated and underwent primary closure. In 12 of the animals, pulsatile lavage (20 psi [138 kPa]) was used as the irrigation method, and in the other 12 animals, bulb-syringe irrigation was performed. A third group of 6 rats did not undergo the blast procedure but instead underwent surgical incision into the left thigh muscle followed by pulsatile lavage. Serial radiographs of the animals were made to monitor the formation of soft-tissue radiopaque lesions until euthanasia at 6 months. Image-guided muscle biopsies were performed at 8 weeks and 6 months (at euthanasia) on representative animals from each group. Histological analysis was performed with hematoxylin and eosin, alizarin red, and von Kossa staining on interval biopsy and postmortem specimens. Results: All animals managed with pulsatile lavage, with or without blast injury, developed soft-tissue radiopaque lesions, whereas no animal that had bulb-syringe irrigation developed these lesions (p = 0.001). Five of the 12 animals that underwent blast amputation with pulsatile lavage experienced wound complications, whereas no animal in the other 2 groups experienced wound complications (p = 0.014). Radiopaque lesions appeared approximately 10 days postoperatively, increased in density until approximately 16 weeks, then demonstrated signs of variable regression. Histological analysis of interval biopsy and postmortem specimens demonstrated tissue damage with inflammatory cells, cell death, and dystrophic calcification. Conclusions: Pulsatile lavage of musculoskeletal wounds can cause irreversible insult to tissue, resulting in myonecrosis and dystrophic calcification. Clinical Relevance: The benefits and offsetting harm of pulsatile lavage (20 psi) should be considered before its routine use in the management of musculoskeletal wounds.
During arthroscopic Bankart repair, penetration of suture anchors through the far cortex can compromise the initial biomechanical characteristics of anchor stability and repair integrity. This study compared the placement of suture anchors through a low anterior-inferior rotator interval portal (AI) vs a trans-subscapularis portal to evaluate the rate of anchor perforation as well as biomechanical strength. Ten matched pairs of cadaveric shoulders were randomized to an AI or a trans-subscapularis portal for placement of suture anchors at the 3 o'clock and 5:30 positions. The following measurements were obtained: (1) distance from the portal to the cephalic vein; (2) presence and length of anchor penetration through the inferior glenoid; and (3) ultimate failure strength of the anchors. The distance from the portal to the cephalic vein was significantly greater with the AI vs the trans-subscapularis portal across all specimens (29.9 vs 11.2 mm, P<.05). The rate of anchor penetration was significantly increased in the AI group vs the trans-subscapularis group at the 5:30 position (60% vs 10%, P=.014) but not at the 3 o'clock position (P=.33). Mean pullout strength of the anchors at the 5:30 position trended higher in the trans-subscapularis group, but the difference was not significant (132.8 vs 112.6 N, P=.18). The cephalic vein is closer to the trans-subscapularis portal than to the AI, but is at a safe distance. Both the rate and the degree of glenoid suture anchor penetration were lower with the trans-subscapularis portal compared with the AI at the 5:30 position. Placing anchors through the trans-subscapularis portal provides a safe alternative method, with improved positioning of the inferiormost anchor compared with the traditional AI.
Background Although use of nonsteroidal antiinflammatory drugs and low-dose irradiation has demonstrated efficacy in preventing heterotopic ossification (HO) after THA and surgical treatment of acetabular fractures, these modalities have not been assessed after traumatic blast amputations where HO is a common complication that can arise in the residual limb. Questions/purposes The purpose of this study was to investigate the effectiveness of indomethacin and irradiation in preventing HO induced by high-energy blast trauma in a rat model. Methods Thirty-six Sprague-Dawley rats underwent hind limb blast amputation with a submerged explosive under water followed by irrigation and primary wound closure. One group (n = 12) received oral indomethacin for 10 days starting on postoperative Day 1. Another group (n = 12) received a single dose of 8 Gy irradiation to the residual limb on postoperative Day 3. A control group (n = 12) did not receive either. Wound healing and clinical course were monitored in all animals until euthanasia at 24 weeks. Serial radiographs were taken immediately postoperatively, at 10 days, and every 4 weeks thereafter to monitor the time course of ectopic bone formation until euthanasia. Five independent graders evaluated the 24week radiographs to quantitatively assess severity and qualitatively assess the pattern of HO using a modified This work was funded by the Department of Defense Peer Reviewed Orthopaedic Research Program (VDP, Principal Investigator; Award Number: W81XWH-10-1-0975). Clinical Orthopaedics and Related Research® neither advocates nor endorses the use of any treatment, drug, or device. Readers are encouraged to always seek additional information, including FDA-approval status, of any drug or device prior to clinical use. Each author certifies that his or her institution approved the animal protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.