Resilient ecosystems provide natural insurance value, or resilience value, to the landowner and to society at large. In response to global calls for integrating biodiversity in sector policy and planning, we analysed the specified resilience value by simulating three storm regimes and five management scenarios: Business As Usual/BAU (spruce-dominance), Spruce Monoculture, More Broadleaves, Continuous Cover Forestry (CCF), and No Thinnings. The forest decision support system Heureka RegWise was used to simulate the effects of storms on forest dynamics and Net Present Value (NPV). No Thinnings, CCF and More Broadleaves were more resilient to storms (reduced damage cost) compared to BAU. BAU had the highest NPV only if storms are ignored, a common assumption in today's forest planning. Given storms, No Thinnings maximises NPV on landscape level. On the 20% most vulnerable plots the NPV was much higher for No Thinnings and slightly higher for CCF and More Broadleaves, compared to BAU. CCF and More Broadleaves also provide nature-based solutions (co-benefits) including public goods. However, forestry adaptations to storms are slow in Sweden, in contrast to e.g. German state forestry which emphasises maximising tree growth and resilience to several stresses and disturbances rather than NPV optimisation.
The European Union (EU) set clear climate change mitigation targets to reach climate neutrality, accounting for forests and their woody biomass resources. We investigated the consequences of increased harvest demands resulting from EU climate targets. We analysed the impacts on national policy objectives for forest ecosystem services and biodiversity through empirical forest simulation and multi-objective optimization methods. We show that key European timber-producing countries – Finland, Sweden, Germany (Bavaria) – cannot fulfil the increased harvest demands linked to the ambitious 1.5°C target. Potentials for harvest increase only exists in the studied region Norway. However, focusing on EU climate targets conflicts with several national policies and causes adverse effects on multiple ecosystem services and biodiversity. We argue that the role of forests and their timber resources in achieving climate targets and societal decarbonization should not be overstated. Our study provides insight for other European countries challenged by conflicting policies and supports policymakers.
Climate change is causing more frequent and severe climatic events, such as extreme heat and co-occurring drought, potentially accelerating tree mortality. Which tree species will cope better with those extreme events is still being researched. This study focuses on heat as a physiological stress factor and interspecific variation of thermal tolerance and sensitivity traits in 15 temperate coniferous and broad-leaved tree species. We investigate (1) whether thermal tolerance and sensitivity traits correlate with a drought-related physiological trait, particularly the leaf turgor loss point (πtlp, wilting point), and (2) how thermal tolerance and sensitivity traits co-vary within different tree-functional types classified by morphological and physiological traits of the leaf, i.e., leaf mass per area (LMA) and percentage loss of area (PLA). The study was carried out in the Traunstein Forest Dynamics Plot of the ForestGEO network in Germany. The temperature response of the maximum quantum yield of photosystem II (Fv/Fm) on leaf discs was determined, from which various physiological leaf traits were estimated, one of which is the breaking point temperature (T5), the temperature at which Fv/Fm declines by 5%. Additionally, the temperature of 50% (T50) and 95% (T95) decline in Fv/Fm was evaluated. The decline width between T50 and T5 (DWT50−T5) was taken as an indicator of the species’ thermal sensitivity. The breaking point temperature ranged from 35.4 ± 3.0 to 47.9 ± 3.9 °C among the investigated tree species and T50 ranged between 46.1 ± 0.4 and 53.6 ± 0.7 °C. A large interspecific variation of thermal tolerance and sensitivity was found. European ash (Fraxinus excelsior L.) was the most heat-sensitive species, while Wild cherry (Prunus avium L.) was the least heat-sensitive species. Species with a more negative πtlp tended to have a higher breaking point temperature than species with a less negative πtlp. A lower thermal sensitivity characterized species with a higher LMA, and high PLA was found in species with low thermal sensitivity. Accordingly, species with thicker and tougher leaves have lower thermal sensitivity which coincides with a lower wilting point. We conclude that species that develop drought-adapted foliage can cope better with heat stress. Further, they might be able to maintain transpirational cooling during combined heat and drought stress, which could lessen their mortality risk during climatic extremes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.