These findings show that frontotemporal lobar degeneration (FTLD) is a highly heritable disorder but heritability varies between the different syndromes. Furthermore, while MAPT and GRN mutations account for a substantial proportion of familial cases, there are other genes yet to be discovered, particularly in patients with type 3 FTLD-TDP without a GRN mutation.
Through an international consortium, we have collected 37 tau- and TAR DNA-binding protein 43 (TDP-43)-negative frontotemporal lobar degeneration (FTLD) cases, and present here the first comprehensive analysis of these cases in terms of neuropathology, genetics, demographics and clinical data. 92% (34/37) had fused in sarcoma (FUS) protein pathology, indicating that FTLD-FUS is an important FTLD subtype. This FTLD-FUS collection specifically focussed on aFTLD-U cases, one of three recently defined subtypes of FTLD-FUS. The aFTLD-U subtype of FTLD-FUS is characterised clinically by behavioural variant frontotemporal dementia (bvFTD) and has a particularly young age of onset with a mean of 41 years. Further, this subtype had a high prevalence of psychotic symptoms (36% of cases) and low prevalence of motor symptoms (3% of cases). We did not find FUS mutations in any aFTLD-U case. To date, the only subtype of cases reported to have ubiquitin-positive but tau-, TDP-43- and FUS-negative pathology, termed FTLD-UPS, is the result of charged multivesicular body protein 2B gene (CHMP2B) mutation. We identified three FTLD-UPS cases, which are negative for CHMP2B mutation, suggesting that the full complement of FTLD pathologies is yet to be elucidated.
Mutations in CHMP2B cause frontotemporal dementia (FTD) in a large Danish pedigree, which is termed FTD linked to chromosome 3 (FTD-3), and also in an unrelated familial FTD patient. CHMP2B is a component of the ESCRT-III complex, which is required for function of the multivesicular body (MVB), an endosomal structure that fuses with the lysosome to degrade endocytosed proteins. We report a novel endosomal pathology in CHMP2B mutation-positive patient brains and also identify and characterize abnormal endosomes in patient fibroblasts. Functional studies demonstrate a specific disruption of endosome–lysosome fusion but not protein sorting by the MVB. We provide evidence for a mechanism for impaired endosome–lysosome fusion whereby mutant CHMP2B constitutively binds to MVBs and prevents recruitment of proteins necessary for fusion to occur, such as Rab7. The fusion of endosomes with lysosomes is required for neuronal function and the data presented therefore suggest a pathogenic mechanism for FTD caused by CHMP2B mutations.
Moths recognize a wide range of volatile compounds, which they use to locate mates, food sources, and oviposition sites. These compounds are recognized by odorant receptors (OR) located within the dendritic membrane of sensory neurons that extend into the lymph of sensilla, covering the surface of insect antennae. We have identified 3 genes encoding ORs from the tortricid moth, Epiphyas postvittana, a pest of horticulture. Like Drosophila melanogaster ORs, they contain 7 transmembrane helices with an intracellular N-terminus, an orientation in the plasma membrane opposite to that of classical GPCRs. EpOR2 is orthologous to the coreceptor Or83b from D. melanogaster. EpOR1 and EpOR3 both recognize a range of terpenoids and benzoates produced by plants. Of the compounds tested, EpOR1 shows the best sensitivity to methyl salicylate [EC(50) = 1.8 x 10(-12) M], a common constituent of floral scents and an important signaling compound produced by plants when under attack from insects and pathogens. EpOR3 best recognizes the monoterpene citral to low concentrations [EC(50) = 1.1 x 10(-13) M]. Citral produces the largest amplitude electrophysiological responses in E. postvittana antennae and elicits repellent activity against ovipositing female moths. Orthologues of EpOR3 were found across 6 families within the Lepidoptera, suggesting that the ability to recognize citral may underpin an important behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.