Patterns of fecal reproductive steroid metabolites and adrenal corticoids were characterized for 12-to 24-month periods in black (n = 10 male, 16 female) and white (n = 6 male, 13 female) rhinoceroses at 14 institutions. All black rhinoceros females exhibited at least some ovarian cyclicity on the basis of fecal progestogen analysis (range, 2-12 cycles/yr). However, cycles often were erratic, with many being shorter (<20 days; 18% of cycles) or longer (>32 days; 21%) than the average of 26.8 ± 0.5 days (n = 104 cycles). Five females exhibited periods of acyclicity of 2-10-month duration that were unrelated to season. One complete and seven partial pregnancies were evaluated in the black rhinoceros. Fecal progestogens increased over luteal phase concentrations after 3 months of gestation. Females resumed cyclicity within 3 months postpartum, before calves were weaned (n = 5). Approximately half of white rhinoceros females (6 of 13) showed no evidence of ovarian cyclicity. Of the cycles observed, 5 were "short" (32.8 ± 1.2 days) and 24 were "long" (70.1 ± 1.6 days). Only two females cycled continuously throughout the study. One had both long (n = 9) and short (n = 2) cycles, whereas the other exhibited long cycles only (n = 5). Fecal estrogen excretion was variable, and profiles were not useful for characterizing follicular activity or diagnosing pregnancy in either species. Males of both species showed no evidence of seasonality on the basis of fecal androgen profiles. Androgen metabolite concentrations were higher (P < 0.05) in the black (27.6 ± 6.9 ng/g) than in the white (16.8 ± 3.1 ng/g) rhinoceros. An adrenocorticotropin hormone challenge in four black rhinoceros males demonstrated that the clearance rate of corticoid metabolites into feces was ∼24 hours. Fecal corticoid concentrations did not differ between males and females, but overall means were higher in the black (41.8 ± 3.1 ng/g) than in the white (31.2 ± 1.7 ng/g) rhinoceros. In summary, fecal steroid analysis identified a number of differences in hormonal secretory dynamics between the black and white rhinoceros that may be related to differences in reproductive rates in captivity. Most black rhinoceros females exhibited some cyclic ovarian activity. In contrast, few white rhinoceroses demonstrated evidence of regular estrous cyclicity, and those females that were active had comparatively long cycles. Results also suggest that fecal corticoid concentrations reflect adrenal activity and may be species specific. Continued studies are needed to determine whether fecal corticoid measurements will be useful for understanding the cause of inconsistent gonadal activity in these two species. Because all but three (15.8%) of the white rhinoceroses evaluated in this study were less than 20 years of age compared to 73.1% (19 of 26) of the black rhinoceroses, the impact of age on reproductive and adrenal activity also needs to be evaluated further.
In the elephant, two distinct LH surges occur 3 wk apart during the nonluteal phase of the estrous cycle, but only the second surge (ovLH) induces ovulation. The function of the first, anovulatory surge (anLH) is unknown, nor is it clear what regulates the timing of these two surges. To further study this observation in the Asian elephant, serum concentrations of LH, FSH, progesterone, inhibin, estradiol, and prolactin were quantified throughout the estrous cycle to establish temporal hormonal relationships. To examine long-term dynamics of hormone secretion, analyses were conducted in weekly blood samples collected from 3 Asian elephants for up to 3 yr. To determine whether differences existed in secretory patterns between the anLH and ovLH surges, daily blood samples were analyzed from 21 nonluteal-phase periods from 7 Asian elephants. During the nonluteal phase, serum LH was elevated for 1-2 days during anLH and ovLH surges with no differences in peak concentration between the two surges. The anLH surge occurred 19.9+/-1.2 days after the end of the luteal phase and was followed by the ovLH surge 20.8+/-0.5 days later. Serum FSH concentrations were highest at the beginning of the nonluteal phase and gradually declined to nadir concentrations within 4 days of the ovLH surge. FSH remained low until after the ovLH surge and then increased during the luteal phase. Serum inhibin concentrations were negatively correlated with FSH during the nonluteal phase (r = -0.53). Concentrations of estradiol and prolactin fluctuated throughout the estrous cycle with no discernible patterns evident. In sum, there were no clear differences in associated hormone secretory patterns between the anLH and ovLH surge. However, elevated FSH at the beginning of the nonluteal phase may be important for follicle recruitment, with the first anLH surge acting to complete the follicle selection process before ovulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.