Phospholipid hydroperoxide glutathione peroxidase (GPx4) is a moonlighting selenoprotein, which has been implicated in anti-oxidative defense, sperm development, and cerebral embryogenesis. Among GPx-isoforms, GPx4 is unique because of its capability to reduce complex lipid hydroperoxides and its tendency toward polymerization, but the structural basis for these properties remained unclear. To address this, we solved the crystal structure of the catalytically active U46C mutant of human GPx4 to 1.55 A resolution. X-ray data indicated a monomeric protein consisting of four alpha-helices and seven beta-strands. GPx4 lacks a surface exposed loop domain, which appears to limit the accessibility of the active site of other GPx-isoforms, and these data may explain the broad substrate specificity of GPx4. The catalytic triad (C46, Q81, and W136) is localized at a flat impression of the protein surface extending into a surface exposed patch of basic amino acids (K48, K135, and R152) that also contains polar T139. Multiple mutations of the catalytic triad indicated its functional importance. Like the wild-type enzyme, the U46C mutant exhibits a strong tendency toward protein polymerization, which was prevented by reductants. Site-directed mutagenesis suggested involvement of the catalytic C46 and surface exposed C10 and C66 in polymer formation. In GPx4 crystals, these residues contact adjacent protein monomers.
The development of an embryo constitutes a complex choreography of regulatory events that underlies precise temporal and spatial control. Throughout this process the embryo encounters ever changing environments, which challenge its metabolism. Oxygen is required for embryogenesis but it also poses a potential hazard via formation of reactive oxygen and reactive nitrogen species (ROS/RNS). These metabolites are capable of modifying macromolecules (lipids, proteins, nucleic acids) and altering their biological functions. On one hand, such modifications may have deleterious consequences and must be counteracted by antioxidant defense systems. On the other hand, ROS/RNS function as essential signal transducers regulating the cellular phenotype. In this context the combined maternal/embryonic redox homeostasis is of major importance and dysregulations in the equilibrium of pro- and antioxidative processes retard embryo development, leading to organ malformation and embryo lethality. Silencing the in vivo expression of pro- and antioxidative enzymes provided deeper insights into the role of the embryonic redox equilibrium. Moreover, novel mechanisms linking the cellular redox homeostasis to gene expression regulation have recently been discovered (oxygen sensing DNA demethylases and protein phosphatases, redox-sensitive microRNAs and transcription factors, moonlighting enzymes of the cellular redox homeostasis) and their contribution to embryo development is critically reviewed.
These data suggest that the lack of catalytic activity is the major reason for the embryonic lethality of Gpx4(-/-) mice and that systemic inactivation of the Alox15 gene does not rescue homozygous knock-in mice expressing catalytically silent Gpx4.
Phospholipid hydroperoxide glutathione peroxidase (GPx4) is a moonlighting selenoprotein, which has been implicated in basic cell functions such as anti-oxidative defense, apoptosis, and gene expression regulation. GPx4-null mice die in utero at midgestation, and developmental retardation of the brain appears to play a major role. We investigated post-transcriptional mechanisms of GPx4 expression regulation and found that the guanine-rich sequence-binding factor 1 (Grsf1) up-regulates GPx4 expression. Grsf1 binds to a defined target sequence in the 5-untranslated region (UTR) of the mitochondrial GPx4 (m-GPx4) mRNA, up-regulates UTR-dependent reporter gene expression, recruits m-GPx4 mRNA to translationally active polysome fractions, and coimmunoprecipitates with GPx4 mRNA. During embryonic brain development, Grsf1 and m-GPx4 are coexpressed, and functional knockdown (siRNA) of Grsf1 prevents embryonic GPx4 expression. When compared with mock controls, Grsf1 knockdown embryos showed significant signs of developmental retardations that are paralleled by apoptotic alterations (TUNEL staining) and massive lipid peroxidation (isoprostane formation). Overexpression of m-GPx4 prevented the apoptotic alterations in Grsf1-deficient embryos and rescued them from developmental retardation. These data indicate that Grsf1 up-regulates translation of GPx4 mRNA and implicate the two proteins in embryonic brain development.[Keywords: Glutathione peroxidase 4; guanine-rich sequence-binding factor 1; apoptosis; brain development; embryogenesis] Supplemental material is available at http://www.genesdev.org.
Selenoproteins have been recognized as modulators of brain function and signaling. Phospholipid hydroperoxide glutathione peroxidase (GPx4/PHGPx) is a unique member of the selenium-dependent glutathione peroxidases in mammals with a pivotal role in brain development and function. GPx4 exists as a cytosolic, mitochondrial, and nuclear isoform derived from a single gene. In mice, the GPx4 gene is located on chromosome 10 in close proximity to a functional retrotransposome that is expressed under the control of captured regulatory elements. Elucidation of crystallographic data uncovered structural peculiarities of GPx4 that provide the molecular basis for its unique enzymatic properties and substrate specificity. Monomeric GPx4 is multifunctional: it acts as a reducing enzyme of peroxidized phospholipids and thiols and as a structural protein. Transcriptional regulation of the different GPx4 isoforms requires several isoform-specific cis-regulatory sequences and trans-activating factors. Cytosolic and mitochondrial GPx4 are the major isoforms exclusively expressed by neurons in the developing brain. In stark contrast, following brain trauma, GPx4 is specifically upregulated in non-neuronal cells, i.e., reactive astrocytes. Molecular approaches to genetic modification in mice have revealed an essential and isoform-specific function for GPx4 in development and disease. Here we review recent findings on GPx4 with emphasis on its molecular structure and function and consider potential mechanisms that underlie neural development and neuropathological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.