Purpose: Signal detection is a crucial step in the discovery of post-marketing adverse drug reactions. There is a growing interest in using routinely collected data to complement established spontaneous report analyses. This work aims to systematically review the methods for drug safety signal detection using routinely collected healthcare data and their performance, both in general and for specific types of drugs and outcomes.Methods: We conducted a systematic review following the PRISMA guidelines, and registered a protocol in PROSPERO. MEDLINE, EMBASE, PubMed, Web of Science, Scopus, and the Cochrane Library were searched until July 13, 2021. Results:The review included 101 articles, among which there were 39 methodological works, 25 performance assessment papers, and 24 observational studies.Methods included adaptations from those used with spontaneous reports, traditional epidemiological designs, methods specific to signal detection with real-world data.More recently, implementations of machine learning have been studied in the literature. Twenty-five studies evaluated method performances, 16 of them using the area under the curve (AUC) for a range of positive and negative controls as their main measure. Despite the likelihood that performance measurement could vary by drugevent pair, only 10 studies reported performance stratified by drugs and outcomes, in a heterogeneous manner. The replicability of the performance assessment results was limited due to lack of transparency in reporting and the lack of a gold standard reference set.Conclusions: A variety of methods have been described in the literature for signal detection with routinely collected data. No method showed superior performance in all papers and across all drugs and outcomes, performance assessment and reporting were heterogeneous. However, there is limited evidence that self-controlled designs, high dimensional propensity scores, and machine learning can achieve higher performances than other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.