Circadian clocks are synchronized by the natural day/night and temperature cycles. Our previous work demonstrated that synchronization by temperature is a tissue autonomous process, similar to synchronization by light. We show here that this is indeed the case, with the important exception of the brain. Using luciferase imaging we demonstrate that brain clock neurons depend on signals from peripheral tissues in order to be synchronized by temperature. Reducing the function of the gene nocte in chordotonal organs changes their structure and function and dramatically interferes with temperature synchronization of behavioral activity. Other mutants known to affect the function of these sensory organs also interfere with temperature synchronization, demonstrating the importance of nocte in this process and identifying the chordotonal organs as relevant sensory structures. Our work reveals surprising and important mechanistic differences between light- and temperature-synchronization and advances our understanding of how clock resetting is accomplished in nature.
Several aspects of mitotic spindle assembly are orchestrated by the Ran GTPase through its modulation of the interaction between spindle assembly factors and importin-α. One such factor is TPX2 that promotes microtubule assembly in the vicinity of chromosomes. TPX2 is inhibited when bound to importin-α, which occurs when the latter is bound to importin-β. The importin-α:β interaction is disrupted by the high RanGTP concentration near the chromosomes, releasing TPX2. In more distal regions, where Ran is predominantly GDP-bound, TPX2 remains bound to importin-α and so is inhibited. Here we use a combination of structural and biochemical methods to define the basis for TPX2 binding to importin-α. A 2.2 Å resolution crystal structure shows that the primary nuclear localization signal (284KRKH287) of TPX2, which has been shown to be crucial for inhibition, binds to the minor NLS-binding site on importin-α. This atypical interaction pattern was confirmed using complementary binding studies that employed importin-α variants in which binding to either the major or minor NLS-binding site was impaired, together with competition assays using the SV40 monopartite NLS that binds primarily to the major site. The different way in which TPX2 binds to importin-α could account for much of the selectivity necessary during mitosis because this would reduce the competition for binding to importin-α from other NLS-containing proteins.
Meng, Xiangdong; Smith, Robin M.; Giesecke, Astrid V.; Joung, J. Keith; and Wolfe, Scot A., "Counter-selectable marker for bacterialbased interaction trap systems" (2006). Program in Gene Function and Expression Publications and Presentations. 124.
Cys 2 His 2 zinc-fingers (C2H2 ZFs) mediate a wide variety of protein-DNA and protein-protein interactions. DNA-binding C2H2 ZFs can be shuffled to yield artificial proteins with different DNAbinding specificities. Here we demonstrate that shuffling of C2H2 ZFs from transcription factor dimerization zinc-finger (DZF) domains can also yield two-finger DZFs with novel protein-protein interaction specificities. We show that these synthetic protein-protein interaction domains can be used to mediate activation of a single-copy reporter gene in bacterial cells and of an endogenous gene in human cells. In addition, the synthetic two-finger domains we constructed can also be linked together to create more extended, four-finger interfaces. Our results demonstrate that shuffling of C2H2 ZFs can yield artificial protein-interaction components that should be useful for applications in synthetic biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.