SummaryWhile Cas9 nucleases permit rapid and efficient generation of gene-edited cell lines, the CRISPR-Cas9 system can introduce undesirable “on-target” mutations within the second allele of successfully modified cells via non-homologous end joining (NHEJ). To address this, we fused the Streptococcus pyogenes Cas9 (SpCas9) nuclease to a peptide derived from the human Geminin protein (SpCas9-Gem) to facilitate its degradation during the G1 phase of the cell cycle, when DNA repair by NHEJ predominates. We also use mRNA transfection to facilitate low and transient expression of modified and unmodified versions of Cas9. Although the frequency of homologous recombination was similar for SpCas9-Gem and SpCas9, we observed a marked reduction in the capacity for SpCas9-Gem to induce NHEJ-mediated indels at the target locus. Moreover, in contrast to native SpCas9, we demonstrate that transient SpCas9-Gem expression enables reliable generation of both knockin reporter cell lines and genetically repaired patient-specific induced pluripotent stem cell lines free of unwanted mutations at the targeted locus.
Dendritic cells (DCs) not only exhibit the unique capacity to evoke primary immune responses, but may also acquire TLR-triggered cytotoxic activity. We and others have previously shown that TLR7/8- and TLR9-stimulated plasmacytoid DCs (pDCs) isolated from human peripheral blood express the effector molecule TRAIL. The exact mechanisms through which pDCs acquire and elicit their cytotoxic activity are still not clear. We now show that in the absence of costimulators, TRAIL induction on pDCs occurs with agonists to intracellular TLRs only and is accompanied by a phenotypic as well as functional maturation, as evidenced by a comparatively superior MLR stimulatory capacity. pDCs acquired TRAIL in an IFN-α/β–dependent fashion and, notably, TRAIL expression on pDCs could be induced by IFN-α stimulation alone. At a functional level, both TLR7/8- (imiquimod [IMQ]) and TLR9-stimulated (CpG2216) pDCs lysed Jurkat T cells in a TRAIL- and cell contact-dependent fashion. More importantly, IFN-α–activated pDCs acquired similar cytotoxic properties, independent of TLR stimulation and maturation. Both IMQ- and IFN-α–activated pDCs could also lyse certain melanoma cell lines in a TRAIL-dependent fashion. Interestingly, suboptimal doses of IMQ and IFN-α exhibited synergistic action, leading to optimal TRAIL expression and melanoma cell lysis by pDCs. Our data imply that tumor immunity in patients receiving adjuvant IMQ and/or IFN-α may involve the active participation of cytotoxic pDCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.