A symbiotic ecosystem is studied by means of the Lotka-Volterra stochastic model, using the generalized Verhulst self-regulation. The effect of fluctuating environment on the carrying capacity of a population is taken into account as dichotomous noise. The study is a follow-up of our investigation of symbiotic ecosystems subjected to three-level (trichotomous) noise [Phys. Rev. E 65, 051108 (2002)]]. Relying on the mean-field theory, an exact self-consistency equation for stationary states is derived. In some cases the mean field exhibits hysteresis as a function of noise parameters. It is established that random interactions with the environment can cause discontinuous transitions. The dependence of the critical coupling strengths on the noise parameters is found and illustrated by phase diagrams. Predictions from the mean-field theory are compared with the results of numerical simulations. Our results provide a possible scenario for catastrophic shifts of population sizes observed in nature.
An N-species Lotka-Volterra stochastic model of a symbiotic ecological system with the Verhulst self-regulation mechanism is considered. The effect of fluctuating environment on the carrying capacity of a population is modeled as the colored three-level Markovian (trichotomous) noise. In the framework of the mean-field theory an explicit self-consistency equation for stationary states is presented. Stability and instability conditions and colored-noise-induced discontinuous transitions (catastrophic shifts) in the model are investigated. In some cases the mean field exhibits hysteresis as a function of the noise parameters. It is shown that the occurrence of catastrophic shifts can be controlled by noise parameters, such as correlation time, amplitude, and flatness. The dependence of the critical coupling strengths on the noise parameters is found and illustrated by phase diagrams. Implications of the results on some modifications of the model are discussed.
The dynamics of an overdamped Brownian particle in a piecewise linear spatially periodic potential subjected to both thermal and colored symmetric three-level Markovian (trichotomous) noises is investigated. In the case of large flatness, the exact formula for the stationary current is presented. The dependence of the current on the system parameters is analyzed and the conditions for the occurrence of current reversals are found. It is shown that the direction and value of the current can be controlled by a thermal noise. Asymptotic formulas for the current for various limits of the noise parameters are calculated and compared with the results of other authors. For small noise amplitudes, it is demonstrated that the temperature at which the current is maximized is proportional to the height of the potential barrier, being a slowly varying function of the other system parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.