The programming of nanomaterials at molecular length-scales
to
control architecture and function represents a pinnacle in soft materials
synthesis. Although elusive in synthetic materials, Nature has evolutionarily
refined macromolecular synthesis with perfect atomic resolution across
three-dimensional space that serves specific functions. We show that
biomolecules, specifically proteins, provide an intrinsic macromolecular
backbone for the construction of anisotropic brush polymers with monodisperse
lengths via grafting-from strategy. Using human serum albumin as a
model, its sequence was exploited to chemically transform a single
cysteine, such that the expression of said functionality is asymmetrically
placed along the backbone of the eventual brush polymer. This positional
monofunctionalization strategy was connected with biotin–streptavidin
interactions to demonstrate the capabilities for site-specific self-assembly
to create higher ordered architectures. Supported by systematic experimental
and computational studies, we envisioned that this macromolecular
platform provides unique avenues and perspectives in macromolecular
design for both nanoscience and biomedicine.
The targeted pharmacological modulation of polymorphonuclear leukocytes (PMNs) is of major medical interest. These innate immune cells play a central role in the defense against pathogenic microorganisms. However, their excessive chemotactic recruitment into tissues after traumatic injury is detrimental due to local and systemic inflammation. Rho‐GTPases, being the master regulators of the actin cytoskeleton, regulate migration and chemotaxis of PMNs, are attractive pharmacological targets. Herein, supramolecular protein complexes are assembled in a “mix‐and‐match” approach containing the specific Rho‐inhibiting clostridial C3 enzyme and three PMN‐binding peptides using an avidin platform. Selective delivery of the C3 Rho‐inhibitor with these complexes into the cytosol of human neutrophil‐like NB‐4 cells and primary human PMNs ex vivo is demonstrated, where they catalyze the adenosine diphosphate (ADP) ribosylation of Rho and induce a characteristic change in cell morphology. Notably, the complexes do not deliver C3 enzyme into human lung epithelial cells, A549 lung cancer cells, and immortalized human alveolar epithelial cells (hAELVi), demonstrating their cell type‐selectivity. The supramolecular complexes represent attractive molecular tools to decipher the role of PMNs in infection and inflammation or for the development of novel therapeutic approaches for diseases that are associated with hyperactivity and reactivity of PMNs such as post‐traumatic injury.
Advanced derivatives of the Endogenous Peptide Inhibitor of CXCR4 (EPI-X4) have shown therapeutic efficacy upon topical administration in animal models of asthma and dermatitis. Here, we studied the plasma stability of the EPI-X4 lead compounds WSC02 and JM#21, using mass spectrometry to monitor the chemical integrity of the peptides and a functional fluorescence-based assay to determine peptide function in a CXCR4-antibody competition assay. Although mass spectrometry revealed very rapid disappearance of both peptides in human plasma within seconds, the functional assay revealed a significantly higher half-life of 9 min for EPI-X4 WSC02 and 6 min for EPI-X4 JM#21. Further analyses demonstrated that EPI-X4 WSC02 and EPI-X4 JM#21 interact with low molecular weight plasma components and serum albumin. Albumin binding is mediated by the formation of a disulfide bridge between Cys10 in the EPI-X4 peptides and Cys34 in albumin. These covalently linked albumin–peptide complexes have a higher stability in plasma as compared with the non-bound peptides and retain the ability to bind and antagonize CXCR4. Remarkably, chemically synthesized albumin-EPI-X4 conjugates coupled by non-breakable bonds have a drastically increased plasma stability of over 2 h. Thus, covalent coupling of EPI-X4 to albumin in vitro before administration or in vivo post administration may significantly increase the pharmacokinetic properties of this new class of CXCR4 antagonists.
The preparation of precise macromolecules with multiple functionalities remains a challenge in drug delivery. Here, a method to prepare stoichiometrically precise tetrafunctional streptavidin conjugates is presented with an exemplary structure...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.