OBJECTIVE: To test the hypothesis that supplementation with the long chain polyunsaturated fatty acids docosahexaenoic acid (DHA) and arachidonic acid (AA) to very low birth weight (VLBW) infants would improve long-term cognitive functions and influence neuroanatomical volumes and cerebral cortex measured by MRI.
METHODS:The current study is a follow-up of a randomized, double-blinded, placebo-controlled study of supplementation with high-dose DHA (0.86%) and AA (0.91%) to 129 VLBW infants fed human milk. Ninety-eight children participated at 8 years follow-up and completed a broad battery of cognitive tests. Eighty-one children had cerebral MRI scans of acceptable quality.RESULTS: There were no significant differences between the intervention group and the control group on any of the cognitive measures. Equally, MRI data on segmental brain volumes and cerebral cortex volume, area, and thickness suggested no overall group effect.CONCLUSIONS: This study is the first long-term follow-up of a randomized controlled trial with supplementation of DHA and AA to human milk fed VLBW infants investigating both cognitive functions and brain macrostructure measured by MRI. No cognitive or neuroanatomical effects of the supplementation were detected at 8 years of age.
Background: Extrauterine growth restriction is common among very low birth weight infants (VLBW, BW <1,500 g). Optimal postnatal nutrient supply is essential to limit growth restriction and ensure adequate growth and neurodevelopment. Objectives: We compared an enhanced postnatal nutrient supply to a standard supply and evaluated the effects on growth velocity, head circumference growth and cerebral maturation - the latter by magnetic resonance diffusion tensor imaging (DTI). We hypothesized increased growth velocity, head circumference growth and decreased mean diffusivity (MD) in cerebral white matter (WM) areas, suggesting improved cerebral maturation among infants on the enhanced nutrient supply. Methods: In this randomized controlled trial, infants on the enhanced nutrient supply received increased amounts of energy, protein, fat, essential fatty acids and vitamin A until discharge. DTI was performed close to term equivalent age. Outcomes were growth velocity, head circumference growth and WM mean diffusivity. Results: Among the 50 included infants, 14 in the intervention group and 11 controls underwent a successful DTI. Infants on the enhanced diet achieved improved growth velocity (16.5 vs. 13.8 g/kg/day, p = 0.01) and increased head circumference (Δz score: 0.24 vs. -0.12, p = 0.15). A significantly lower MD was seen in a large WM area such as the superior longitudinal fasciculi (1.19 × 10-3 vs. 1.24 × 10-3 mm2/s, p = 0.04, adjusted for age when scanned). Conclusions: Enhanced nutrient supply to VLBW infants is associated with improved growth velocity, increased head circumference growth and decreased regional WM mean diffusivity, suggesting improved maturation of cerebral connective tracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.