Glutathione transferases (GSTs) are often overexpressed in tumors and frequently correlated to bad prognosis and resistance against a number of different anticancer drugs. To selectively target these cells and to overcome this resistance we previously have developed prodrugs that are derivatives of existing anticancer drugs (e.g., doxorubicin) incorporating a sulfonamide moiety. When cleaved by GSTs, the prodrug releases the cytostatic moiety predominantly in GST overexpressing cells, thus sparing normal cells with moderate enzyme levels. By modifying the sulfonamide it is possible to control the rate of drug release and specifically target different GSTs. Here we show that the newly synthesized compounds, 4-acetyl-2-nitro-benzenesulfonyl etoposide (ANS–etoposide) and 4-acetyl-2-nitro-benzenesulfonyl doxorubicin (ANS–DOX), function as prodrugs for GSTA1 and MGST1 overexpressing cell lines. ANS–DOX, in particular, showed a desirable cytotoxic profile by inducing toxicity and DNA damage in a GST-dependent manner compared to control cells. Its moderate conversion of 500 nmol/min/mg, as catalyzed by GSTA1, seems hereby essential since the more reactive 2,4-dinitrobenzenesulfonyl doxorubicin (DNS–DOX) (14000 nmol/min/mg) did not display a preference for GSTA1 overexpressing cells. DNS–DOX, however, effectively killed GSTP1 (20 nmol/min/mg) and MGST1 (450 nmol/min/mg) overexpressing cells as did the less reactive 4-mononitrobenzenesulfonyl doxorubicin (MNS–DOX) in a MGST1-dependent manner (1.5 nmol/min/mg) as shown previously. Furthermore, we show that the mechanism of these prodrugs involves a reduction in GSH levels as well as inhibition of the redox regulatory enzyme thioredoxin reductase 1 (TrxR1) by virtue of their electrophilic sulfonamide moiety. TrxR1 is upregulated in many tumors and associated with resistance to chemotherapy and poor patient prognosis. Additionally, the prodrugs potentially acted as a general shuttle system for DOX, by overcoming resistance mechanisms in cells. Here we propose that GST-dependent prodrugs require a conversion rate “window” in order to selectively target GST overexpressing cells, while limiting their effects on normal cells. Prodrugs are furthermore a suitable system to specifically target GSTs and to overcome various drug resistance mechanisms that apply to the parental drug.
Microsomal glutathione transferase 1 (MGST1) is a detoxification enzyme belonging to the Membrane Associated Proteins in Eicosanoid and Glutathione Metabolism (MAPEG) superfamily. Here we have used electron crystallography of two-dimensional crystals in order to determine an atomic model of rat MGST1 in a lipid environment. The model comprises 123 of the 155 amino acid residues, two structured phospholipid molecules, two aliphatic chains and one glutathione (GSH) molecule. The functional unit is a homotrimer centered on the crystallographic three-fold axes of the unit cell. The GSH substrate binds in an extended conformation at the interface between two subunits of the trimer supported by new in vitro mutagenesis data. Mutation of Arginine 130 to alanine resulted in complete loss of activity consistent with a role for Arginine 130 in stabilizing the strongly nucleophilic GSH thiolate required for catalysis. Based on the new model and an electron diffraction data set from crystals soaked with trinitrobenzene, that forms a dead-end Meisenheimer complex with GSH, a difference map was calculated. The map reveals side chain movements opening a cavity that defines the second substrate site.
Bortezomib is a highly selective inhibitor of the 26S proteasome and has been approved for clinical use in the treatment of relapsing and refractory multiple myeloma and mantle cell lymphoma. Clinical trials are also underway to assess the role of bortezomib in several other human malignancies, including leukemia. However, the mechanism(s) by which bortezomib acts remain to be fully understood. Here, we studied the molecular requirements of bortezomib-induced apoptosis using the human T-cell leukemic Jurkat cells stably transfected with or without shRNA against apoptotic protease-activating factor-1 (Apaf-1). The Apaf-1-deficient Jurkat T cells were resistant to bortezomibinduced apoptosis, as assessed by caspase-3 activity, poly(ADPribose) polymerase cleavage, phosphatidylserine externalization, and hypodiploid DNA content. In contrast, Apaf-1-deficient cells were sensitive to Fas-induced apoptosis. Bortezomib induced an upregulation of the pro-apoptotic protein Noxa, loss of mitochondrial transmembrane potential, and release of cytochrome c in cells expressing or not expressing Apaf-1. Transient silencing of Apaf-1 expression in RPMI 8402 T-cell leukemic cells also diminished bortezomib-induced apoptosis. Fas-associated death domain (FADD)-deficient Jurkat cells were resistant to Fas-mediated apoptosis yet remained sensitive to bortezomib. Our results show that bortezomib induces apoptosis by regulating pathways that are mechanistically different from those activated upon death receptor ligation. Furthermore, in silico analyses of public transcriptomics databases indicated elevated Apaf-1 expression in several hematologic malignancies, including acute lymphoblastic and myeloid leukemia. We also noted variable Apaf-1 expression in a panel of samples from patients with acute lymphoblastic leukemia. Our results suggest that the expression of Apaf-1 may be predictive of the response to proteasome inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.