Background: Although very common in our society, the effect of hair removal on physiological skin parameters and on the ingress of applied chemicals has not been systematically investigated. Thus, as a first step, the aim of the present study was to elucidate the effect of hair removal through epilation (electric epilation, waxing) and depilation (dry and wet shaving, depilatory cream) on skin properties in vitro using the porcine ear model. Methods: Attenuated total reflection Fourier transform infrared spectroscopy, measurement of the transepidermal water loss (TEWL), visualization by capacitance-based contact imaging, confocal Raman spectroscopy (CRS), diffusion cell studies and tape stripping experiments were employed. Results: Increased TEWL and altered skin permittivity maps were observed. Decreased stratum corneum thickness was observed after waxing. Diffusion cell studies showed increased skin permeation especially in case of dry shaving, electric epilation and waxing. Conclusion: Considering CRS and diffusion cell data, a moderate if significant decrease in skin barrier function was found after hair removal by dry shaving (physical skin/material interaction) and epilation methods (plucking out the entire hair, for example, by electrical epilation and waxing). Subsequent experiments will include testing of different permeants covering a broad range of physicochemical properties in vitro and confirming our findings in vivo.
Objective
The aim of the present study was to evaluate the effect of hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) in cosmetic submicron emulsions and submicron emulsion gels on physiological skin parameters during regular application in a clinical set‐up.
Methods
Formulation morphology was investigated using cryo‐transmission electron microscopy. Stability of the employed formulations was determined by photon correlation spectroscopy, measurement of pH and rheological properties. Effect on physiological skin parameters was evaluated during regular application over four weeks in a parallel group study (n = 15, healthy forearm skin) with a Corneometer, Sebumeter, skin‐pH‐Meter, Aquaflux and an Epsilon sensor. Confocal Raman spectroscopy was employed to monitor urea and NMF levels.
Results
Both submicron emulsions and gels showed satisfying storage stability irrespective of cyclodextrin incorporation. No statistically significant effects on skin barrier function and any of the observed parameters were obtained, indicating good skin tolerability of all tested formulations.
Conclusion
Results suggest good skin tolerability of the developed cosmetic submicron emulsions and gels with HP‐β‐CD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.