A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species.
Attractive landscapes are diverse and resilient landscapes that provide a multitude of essential ecosystem services. The development of landscape policy to protect and improve landscape attractiveness, thereby ensuring the provision of ecosystem services, is ideally adapted to region specific landscape characteristics. In addition, trends in landscape attractiveness may be linked to certain policies, or the absence of policies over time. A spatial and temporal evaluation of landscape attractiveness is thus desirable for landscape policy development. In this paper, landscape attractiveness was spatially evaluated for Flanders (Belgium) using landscape indicators derived from geospatial data as a case study. Large local differences in landscape quality in (i) rural versus urban areas and (ii) between the seven agricultural regions in Flanders were found. This observed spatial variability in landscape attractiveness demonstrated that a localized approach, considering the geophysical characteristics of each individual region, would be required in the development of landscape policy to improve landscape quality in Flanders. Some trends in landscape attractiveness were related to agriculture in Flanders, e.g., a slight decrease in total agricultural area, decrease in dominance of grassland, maize and cereals, a decrease in crop diversity, sharp increase in the adoption of agri-environmental agreements (AEA) and a decrease in bare soil conditions in winter. The observed trends and spatial variation in landscape attractiveness can be used as a tool to support policy analysis, assess the potential effects of future policy plans, identify policy gaps and evaluate past landscape policy.
Information on crop yield at scales ranging from the field to the global level is imperative for farmers and decision makers. The current data sources to monitor crop yield, such as regional agriculture statistics, are often lacking in spatial and temporal resolution. Remotely sensed vegetation indices (VIs) such as NDVI are able to assess crop yield using empirical modelling strategies. Empirical NDVI-based crop yield models were evaluated by comparing the model performance with similar models used in different regions. The integral NDVI and the peak NDVI were weak predictors of winter wheat yield in northern Belgium. Winter wheat (Triticum aestivum) yield variability was better predicted by monthly precipitation during tillering and anthesis than by NDVI-derived yield proxies in the period from 2016 to 2018 (R2 = 0.66). The NDVI series were not sensitive enough to yield affecting weather conditions during important phenological stages such as tillering and anthesis and were weak predictors in empirical crop yield models. In conclusion, winter wheat yield modelling using NDVI-derived yield proxies as predictor variables is dependent on the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.