The use of non-human primate (NHP) animal models, which anatomical and physiological similarities to human, is important for the sake of learning the anatomical properties. This study aimed to characterize the cranial, maxillofacial, and skull base structures of non-human primates as a potential model suitable for a cranial craniotomy model. Adult Macaca fascicularis (MF) skulls classified asspecificpathogen-free for TB, SIV, SV40, Polio, Foamy virus and Herpes B virus from PT Bio Farma (Persero) Animal Lab. Library were used to represent the anatomical model.The open access database from Mammalian Crania Photographic Archive 2 nd Edition (MCPA2) was used for cranial characterization analysis. This study was performed at the Department of Neurosurgery, Dr. Hasan Sadikin General Hospital and the Animal Laboratory of PT. Biofarma (Persero) from November 2018 to January 2019. The skull base structures were assessed for its analogies with its human counterpart. Comparison by t-student analysis between male and female skulls shows the mean male cranial length (CL) is greater than in female (116.68 vs 102.50 mm), with p=0.000; the mean male bizygomatic width (BZB) is greater than in female (79.30 vs 69.70 mm) with p=0.001; the mean male posterior cranial breadth (CBN) is greater than in female (63.40 vs 58.79 mm) with p=0.019; and the mean male cranial base length (CBL) is greater than in female (63.32 vs 57.55 mm), with p=0.001. The skull of MF is suitable for Neurosurgery and Neuroscience study since the MF cranial characterization and structure are similar to that of human. Its structure is ideal for performing craniotomy since it has several characteristics such as cranial vault, maxillofacial structure with huge temporal muscle, and skull base structure.
Amniotic membrane (AM), a hospital waste product, is a potential source for tissue donor. There are several types of AM, namely dried and fresh-AM. AM being challange to be grafted in the clinical application of duramater replacement in neurosurgery cases. This study aimed to characterize the histological properties of dry-lyophilized amniotic membrane, fresh amniotic membrane (AM), and duramater membrane in search for a biologicallyderived material suitable for meninges surface reconstruction. This descriptive study was conducted at the Unit
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.