Microalgae are considered to be promising producers of bioactive chemicals, feeds and fuels from carbon dioxide by photosynthesis. Thus, the prediction of microalgal growth profiles is important for the planning of cost-effective and sustainable cultivation–harvest cycles. This paper proposes a mathematical model capable of predicting the effect of light flux into culture and medium concentration on the growth profiles of microalgae by incorporating these growth-limiting factors into a logistic equation. The specific form of the equation is derived based on the experimentally measured growth profiles of Monoraphidium sp., a microalgal strain isolated by the authors, under 16 conditions consisting of combinations of incident light fluxes into culture and initial medium concentrations. Using a cross-validation method, it is shown that the proposed model has the ability to predict necessary incident light flux into culture and initial medium concentration for harvesting target biomass at a target time. Finally, model-guided cultivation planning is performed and is evaluated by comparing the result with experimental data.
Microalgae are considered to be promising producers of bioactive chemicals, feeds, and fuels from carbon dioxide by photosynthesis. Thus, the prediction of microalgal growth profiles is important for the planning of cost-effective and sustainable cultivation-harvest cycles. This paper proposes a mathematical model capable of predicting the effect of light flux into culture and media concentration on the growth profiles of microalgae by incorporating these growth-limiting factors into the logistic equation. The specific form of the equation is derived based on the experimentally measured growth profiles of Monoraphidium sp., a microalgal strain isolated by the authors. Using a cross-validation method, it is shown that the proposed model has the ability to predict necessary incident light flux into culture and initial media concentration for harvesting target biomass at target time. Finally, the model-guided cultivation planning is performed and is evaluated by comparing the result with the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.