For matrix A, vector b and function f, the computation of vector f(A)b arises in many scientific computing applications. We consider the problem of obtaining quantum state |f> corresponding to vector f(A)b. There is a quantum algorithm to compute state |f> using eigenvalue estimation that uses phase estimation and Hamiltonian simulation e^{\im A t}. However, the algorithm based on eigenvalue estimation needs \poly(1/\epsilon) runtime, where \epsilon is the desired accuracy of the output state. Moreover, if matrix A is not Hermitian, \e^{\im A t} is not unitary and we cannot run eigenvalue estimation. In this paper, we propose a quantum algorithm that uses Cauchy's integral formula and the trapezoidal rule as an approach that avoids eigenvalue estimation. We show that the runtime of the algorithm is \poly(\log(1/\epsilon)) and the algorithm outputs state |f> even if A is not Hermitian.
In this paper, we provide a block diagonalization algorithm of (k, k ′ )-pentadiagonal matrices. The algorithm is a structure-preserving algorithm in that the small diagonal blocks essentially have the same nonzero structure as the original one, and it can be regarded as an extension of the block diagonalization algorithm of k-tridiagonal matrices in [T. Sogabe,
We consider a k-tridiagonal ℓ-Toeplitz matrix as one of generalizations of a tridiagonal Toeplitz matrix. In the present paper, we provide a decomposition of the matrix under a certain condition. By the decomposition, the matrix is easily analyzed since one only needs to analyze the small matrix obtained from the decomposition. Using the decomposition, eigenpairs and arbitrary integer powers of the matrix are easily shown as applications.
In the present paper, we provide a decomposition of a k-tridiagonal Toeplitz matrix via tensor product. By the decomposition, the required memory of the matrix is reduced and the matrix is easily analyzed since we can use properties of tensor product.
he matrix functions can be defined by Cauchy's integral formula and can be approximated by the linear combination of inverses of shifted matrices using a quadrature formula. In this paper, we propose a quantum algorithm for matrix functions based on a procedure to implement the linear combination of the inverses on quantum computers. Compared with the previous study [S. Takahira, A. Ohashi, T. Sogabe, and T.S. Usuda, Quant. Inf. Comput., \textbf{20}, 1\&2, 14--36, (Feb. 2020)] that proposed a quantum algorithm to compute a quantum state for the matrix function based on the circular contour centered at the origin, the quantum algorithm in the present paper can be applied to a more general contour. Moreover, the algorithm is described by the block-encoding framework. Similarly to the previous study, the algorithm can be applied even if the input matrix is not a Hermitian or normal matrix. This is an advantage compared with quantum singular value transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.