Herpes simplex virus type 1 (HSV-1)-based amplicon vectors contain only approximately 1% of the 152-kb HSV-1 genome, and consequently, replication and packaging into virions depends on helper functions. These helper functions have been provided conventionally by a helper virus, usually a replication-defective mutant of HSV-1, or more recently, by a set of five cosmids that overlap and represent the genome of HSV-1 deleted for DNA cleavage/packaging signals (pac). In the absence of pac signals, potential HSV-1 genomes that are reconstituted from the cosmids via homologous recombination are not packageable. The resulting amplicon stocks are, therefore, virtually free of contaminating helper virus. To simplify this packing system, the HSV-1 genome was cloned and maintained stably as a single-copy, F plasmid-based bacterial artificial chromosome in E. coli. Such a plasmid containing the HSV-1 genome deleted for the pac signals (fHSV delta pac) did not generate replication-competent progeny virus on transfection into mammalian cells, but rather, it was able to support the packaging of cotransfected amplicon DNA that contained a functional pac signal. The resulting amplicon vector stocks had titers of up to 10(7) transducing units per milliliter of culture medium and efficiently transduced neural cells in the rat brain, as well as hepatocytes in the rat. The capacity of generating infectious and replication-competent HSV-1 progeny following transfection into mammalian cells was restored after insertion of a pac signal into fHSV delta pac.
The plant chondriome confers a complex nature. The atp4 gene (formerly called orf25) of Aegilops crassa (CR) harbors the promoter sequence of the rps7 gene from common wheat (Triticum aestivum cv. Chinese Spring, CS). The rps7 gene of CR has the promoter sequence of CS atp6. The atp6 gene of CR contains an unknown sequence inside of its coding region. Since repeat sequences have been found around the breaking points, these structural alterations are most likely generated through homologous recombination. In this study, PCR analysis was performed to detect structural alterations in each of three lines: euplasmic lines of Ae. crassa, Chinese Spring, and alloplasmic Chinese Spring wheat with the cytoplasm of Ae. crassa ((cr)-CS). We found that each of these lines contained both genotypes, although mitochondrial genotypes of CR in Chinese Spring wheat and CS genotypes in Ae. crassa were still retained as minor fractions (less than 10%). On the other hand, CS mitochondrial gene frequencies in ((cr)-CS) were shown to be ca. 30%. SNP analysis after DNA sequencing of these genes indicated that minor types of all three mitochondrial genes in alloplasmic wheat contained the mitochondrial gene types from pollens. Since the frequencies of paternal mitochondrial gene types in F 1 were about 20%, successive backcrossing increased the frequencies of paternal mitochondrial gene types to around 30% in alloplasmic wheat. Expression profiles of these mitochondrial genes were quantitatively analyzed by RT-PCR. Transcripts of paternal mitochondrial gene types were scarcely found. This suggests that minor fractions including paternal mitochondrial gene types are maintained and silenced in the descendants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.