SUMMARYIn the developing vertebrate lens, epithelial cells differentiate into fiber cells, which are elongated and flat in shape and form a multilayered lens fiber core. In this study, we identified the zebrafish volvox (vov) mutant, which shows defects in lens fiber differentiation. In the vov mutant, lens epithelial cells fail to proliferate properly. Furthermore, differentiating lens fiber cells do not fully elongate, and the shape and position of lens fiber nuclei are affected. We found that the vov mutant gene encodes Psmd6, the subunit of the 26S proteasome. The proteasome regulates diverse cellular functions by degrading polyubiquitylated proteins. Polyubiquitylated proteins accumulate in the vov mutant. Furthermore, polyubiquitylation is active in nuclei of differentiating lens fiber cells, suggesting roles of the proteasome in lens fiber differentiation. We found that an E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is involved in lens defects in the vov mutant. These data suggest that the ubiquitin proteasome system is required for cell proliferation of lens epithelium and for the differentiation of lens fiber cells in zebrafish.
In the developing retina, neurogenesis and cell differentiation are coupled with cell proliferation. However, molecular mechanisms that coordinate cell proliferation and differentiation are not fully understood. In this study, we found that retinal neurogenesis is severely delayed in the zebrafish stem-loop binding protein (slbp) mutant. SLBP binds to a stem-loop structure at the 3'-end of histone mRNAs, and regulates a replication-dependent synthesis and degradation of histone proteins. Retinal cell proliferation becomes slower in the slbp1 mutant, resulting in cessation of retinal stem cell proliferation. Although retinal stem cells cease proliferation by 2 days postfertilization (dpf) in the slbp mutant, retinal progenitor cells in the central retina continue to proliferate and generate neurons until at least 5dpf. We found that this progenitor proliferation depends on Notch signaling, suggesting that Notch signaling maintains retinal progenitor proliferation when faced with reduced SLBP activity. Thus, SLBP is required for retinal stem cell maintenance. SLBP and Notch signaling are required for retinal progenitor cell proliferation and subsequent neurogenesis. We also show that SLBP1 is required for intraretinal axon pathfinding, probably through morphogenesis of the optic stalk, which expresses attractant cues. Taken together, these data indicate important roles of SLBP in retinal development.
Intracellular vesicular transport is important for photoreceptor function and maintenance. However, the mechanism underlying photoreceptor degeneration in response to vesicular transport defects is unknown. Here, we report that photoreceptors undergo apoptosis in a zebrafish β-soluble N-ethylmaleimide-sensitive factor attachment protein (β-SNAP) mutant. β-SNAP cooperates with N-ethylmaleimide-sensitive factor to recycle the SNAP receptor (SNARE), a key component of the membrane fusion machinery, by disassembling the cis-SNARE complex generated in the vesicular fusion process. We found that photoreceptor apoptosis in the β-SNAP mutant was dependent on the BH3-only protein BNip1. BNip1 functions as a component of the syntaxin-18 SNARE complex and regulates retrograde transport from the Golgi to the endoplasmic reticulum. Failure to disassemble the syntaxin-18 cis-SNARE complex caused BNip1-dependent apoptosis. These data suggest that the syntaxin-18 cis-SNARE complex functions as an alarm factor that monitors vesicular fusion competence and that BNip1 transforms vesicular fusion defects into photoreceptor apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.