In invertebrates, UNC-45 regulates myosin stability and functions. Vertebrates have two distinct isoforms of the protein: UNC-45B, expressed in muscle cells only and UNC-45A, expressed in all cells and implicated in regulating both Non-Muscle Myosin II (NMII)- and microtubule (MT)-associated functions. Here we show that both, in vitro and in cells, UNC-45A binds to the MT lattice leading to MT bending, breakage and depolymerization. Furthermore, we show that UNC-45A destabilizes MTs independent of its NMII C-terminal binding domain and even in presence of the NMII inhibitor blebbistatin. These findings identified UNC-45A as a novel type of MT-severing protein with a not mutually exclusive but rather dual role in regulating NMII activity and MT stability. Because many human diseases, from cancer to neurodegenerative diseases, are caused by or associated with deregulation of MT stability our findings have profound implications in both, the biology of MTs as well as the biology of human diseases and possible therapeutic implications for their treatment.
Targeting glutamine metabolism has emerged as a novel therapeutic strategy for several human cancers, including ovarian cancer. The primary target of this approach is the kidney isoform of glutaminase, glutaminase 1 (GLS1), a key enzyme in glutamine metabolism that is overexpressed in several human cancers. A first-in-class inhibitor of GLS1, called CB839 (Telaglenastat), has been investigated in several clinical trials, with promising results. The first clinical trial of CB839 in platinum-resistant ovarian cancer patients is forthcoming. ARID1A-mutated ovarian clear cell carcinoma (OCCC) is a relatively indolent and chemoresistant ovarian cancer histotype. In OCCC-derived cells ARID1A simultaneously drives GLS1 expression and metabolism reprograming. In ARID1A-mutated OCCC-derived mouse models, loss of ARID1A corresponds to GLS1 upregulation and increases sensitivity to GLS1 inhibition. Thus, targeting of GLS1 with CB839 has been suggested as a targeted approach for OCCC patients with tumors harboring ARID1A-mutations. Here, we investigated whether GLS1 is differentially expressed between OCCC patients whose tumors are ARID1A positive and patients whose tumors are ARID1A negative. In clinical specimens of OCCC, we found that GLS1 overexpression was not correlated with ARID1A loss. In addition, GLS1 overexpression was associated with better clinical outcomes. Our findings have implications for human trials using experimental therapeutics targeting GLS1
UNC-45A (Protein unc-45 homolog A) is a cytoskeletal-associated protein with a dual and non-mutually exclusive role as a regulator of the actomyosin system and a Microtubule (MT)-destabilizing protein, which is overexpressed in human cancers including in ovarian cancer patients resistant to the MT-stabilizing drug paclitaxel. Mapping of UNC-45A in the mouse upper genital tract and central nervous system reveals its enrichment not only in highly proliferating and prone to remodeling cells, but also in microtubule-rich areas, of the ovaries and the nervous system, respectively. In both apparatuses, UNC-45A is also abundantly expressed in the ciliated epithelium. As regulators of actomyosin contractility and MT stability are essential for the physiopathology of the female reproductive tract and of neuronal development, our findings suggest that UNC-45A may have a role in ovarian cancer initiation and development as well as in neurodegeneration.
<div><p>Targeting glutamine metabolism has emerged as a novel therapeutic strategy for several human cancers, including ovarian cancer. The primary target of this approach is the kidney isoform of glutaminase, glutaminase 1 (GLS1), a key enzyme in glutamine metabolism that is overexpressed in several human cancers. A first-in-class inhibitor of GLS1, called CB839 (Telaglenastat), has been investigated in several clinical trials, with promising results. The first clinical trial of CB839 in platinum-resistant patients with ovarian cancer is forthcoming. <i>ARID1A</i>-mutated ovarian clear cell carcinoma (OCCC) is a relatively indolent and chemoresistant ovarian cancer histotype. In OCCC-derived cells ARID1A simultaneously drives GLS1 expression and metabolism reprograming. In ARID1A-mutated OCCC-derived mouse models, loss of ARID1A corresponds to GLS1 upregulation and increases sensitivity to GLS1 inhibition. Thus, targeting of GLS1 with CB839 has been suggested as a targeted approach for patients with OCCC with tumors harboring <i>ARID1A</i> mutations. Here, we investigated whether GLS1 is differentially expressed between patients with OCCC whose tumors are ARID1A positive and patients whose tumors are ARID1A negative. In clinical specimens of OCCC, we found that GLS1 overexpression was not correlated with ARID1A loss. In addition, GLS1 overexpression was associated with better clinical outcomes. Our findings have implications for human trials using experimental therapeutics targeting GLS1.</p>Significance:<p>GLS1 differential expression in patients with OCCC with or without ARID1A mutations is significant because a clinical trial with a GLS1 inhibitor is forthcoming. Tumors without ARID1A have low levels of GLS1 and GLS1 expression is associated to better outcome. Thus, blockade of GLS1 could be counterproductive for patients with OCCC.</p></div>
UNC-45A is a cytoskeletal-associated protein with a dual and non-mutually exclusive role as a regulator of the acto-myosin system and as a Microtubule (MT)-destabilizing protein. UNC-45A is overexpressed in human cancers including in ovarian cancer patients resistant to the MT-stabilizing drug Paclitaxel. Mapping of UNC-45A in the mouse upper genital tract and central nervous system reveals its enrichment in highly proliferating and prone to remodeling cells and in microtubule-rich areas of in the ovaries and in neurons respectively. In both apparatuses UNC-45A is also abundantly expressed in the ciliated epithelium. Because regulators of acto-myosin contractility and MT stability are essential for the physiopathology of the female reproductive tract and of neuronal development our findings suggest that UNC-45A may have a role in ovarian cancer initiation and development and in neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.