Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices.
A technique called phase contrast mammography (PCM) has only recently been applied in clinical examination. In this application, PCM images are acquired at a 1.75 x magnification using an x-ray tube for clinical use, and then reduced to the real size of the object by image processing. The images showed enhanced object edges; reportedly, this enhancement occurred because of the refraction of x rays through a cylindrical object. The authors measured the physical image characteristics of PCM to compare the image characteristics of PCM with those of conventional mammography. More specifically, they measured the object-edge-response characteristics and the noise characteristics in the spatial frequency domain. The results revealed that the edge-response characteristics of PCM outperformed those of conventional mammography. In addition, the characteristics changed with the object-placement conditions and the object shapes. The noise characteristics of PCM were better than those of conventional mammography. Subsequently, to verify why object edges were enhanced in PCM images, the authors simulated image profiles that would be obtained if the x rays were refracted and totally reflected by using not only a cylindrical substance but also a planar substance as the object. So, they confirmed that the object edges in PCM images were enhanced because x rays were refracted irrespective of the object shapes. Further, they found that the edge enhancements depended on the object shapes and positions. It was also proposed that the larger magnification than 1.75 in the commercialized system might be more suitable for PCM. Finally, the authors investigated phase-contrast effects to breast tissues by the simulation and demonstrated that PCM would be helpful in the diagnoses of mammography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.