Fig. 2. Spatial coverage of GrassPlot data from Morocco to Japan. Currently, the majority comes from sub-Mediterranean to hemiboreal Europe (black = multi-scale plots, grey = other plots). Current content v. 1.00 (January 2018) • 126 datasets • 198 data owners • 36 countries • 168,997 plots, among them 14,064 with data also for non-vascular plants • 66,000 0.01-m² plots, 17,206 1-m² plots, 5,520 10-(or 9-) m² plots, 2,545 100-m² plots • 2,797 nested-plot series (with at least 4 grain sizes)
Aims Understanding fine‐grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine‐grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location Palaearctic biogeographic realm. Methods We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m2 and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi‐natural) grasslands and natural grasslands are the richest vegetation type. The open‐access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions The GrassPlot Diversity Benchmarks provide high‐quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation‐plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology.
Abstract. The syntaxonomy of the perennial nitrophilous vegetation assigned to the Artemisietea vulgaris of the northern part of the Iberian Peninsula (Basque Country and surrounding areas) was revised. The study area is of biogeographic importance due to its transitional character ‐ here, the ruderal vegetation of the Mediterranean and that of temperate Europe meet. Numerical ordination of the communities was performed in order to reveal systematic relations between the syntaxa. Two subclasses, Artemisienea vulgaris and Onopordenea, encompassing five orders, Convolvuletalia, Galio‐Alliarietalia, Artemisietalia, Onopordetalia, Carthametalia lanati, and seven alliances with 12 associations and two rankless communities were distinguished.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.