Background and objectives Disease biomarkers require appropriate clinical context to be used effectively. Combining clinical risk factors, in addition to small changes in serum creatinine, has been proposed to improve the assessment of AKI. This notion was developed in order to identify the risk of AKI early in a patient's clinical course. We set out to assess the performance of this combination approach.Design, setting, participants, & measurements A secondary analysis of data from a prospective multicenter intensive care unit cohort study (September 2009 to April 2010) was performed. Patients at high risk using this combination approach were defined as an early increase in serum creatinine of 0.1-0.4 mg/dl, depending on number of clinical factors predisposing to AKI. AKI was defined and staged using the Acute Kidney Injury Network criteria. The primary outcome was evolution to severe AKI (Acute Kidney Injury Network stages 2 and 3) within 7 days in the intensive care unit.Results Of 506 patients, 214 (42.2%) patients had early creatinine elevation and were deemed at high risk for AKI. This group was more likely to subsequently develop the primary endpoint (16.4% versus 1.0% [not at high risk], P,0.001). The sensitivity of this grouping for severe AKI was 92%, the specificity was 62%, the positive predictive value was 16%, and the negative predictive value was 99%. After adjustment for Sequential Organ Failure Assessment score, serum creatinine, and hazard tier for AKI, early creatinine elevation remained an independent predictor for severe AKI (adjusted relative risk, 12.86; 95% confidence interval, 3.52 to 46.97). Addition of early creatinine elevation to the best clinical model improved prediction of the primary outcome (area under the receiver operating characteristic curve increased from 0.75 to 0.83, P,0.001). ConclusionCritically ill patients at high AKI risk, based on the combination of clinical factors and early creatinine elevation, are significantly more likely to develop severe AKI. As initially hypothesized, the high-risk combination group methodology can be used to identify patients at low risk for severe AKI in whom AKI biomarker testing may be expected to have low yield. The high risk combination group methodology could potentially allow clinicians to optimize biomarker use.
Extracorporeal organ support in patients with dysfunction of vital organs like the kidney, heart, and liver has proven helpful in bridging the patients to recovery or more definitive therapy. Mechanical ventilation in patients with respiratory failure, although indispensable, has been associated with worsening injury to the lungs, termed ventilator-induced lung injury. Application of lung-protective ventilation strategies are limited by inevitable hypercapnia and hypercapnic acidosis. Various alternative extracorporeal strategies, proposed more than 30 years ago, to combat hypercapnia are now more readily available. In particular, the venovenous approach to effective carbon dioxide removal, which involves minimal invasiveness comparable to renal replacement therapy, appears to be very promising. The clinical applications of these extracorporeal carbon dioxide removal therapies may extend beyond just lung protection in ventilated patients. This article summarizes the rationale, technology and clinical application of various extracorporeal lung assist techniques available for clinical use, and some of the future perspectives in the field.
Neutrophil gelatinase-associated lipocalin (NGAL), a protein involved in iron handling, has been recognized as a marker of inflammation. In this regard, serum and urine NGAL levels have proven a useful diagnostic tool for acute kidney injury. Bacterial peritonitis is an all too common complication of peritoneal dialysis (PD) and while diagnosis in most cases is routine, there are times when patients present with typical symptoms but do not have an elevated PD effluent white blood cell count. Furthermore, patients may present with an elevated PD fluid white count, a cloudy effluent and no evidence of active infection. In these cases, a discriminating role for peritoneal fluid NGAL would be useful to distinguish bacterial and nonbacterial PD fluid infection. A small case control study was performed which demonstrated a very high sensitivity and specificity for peritoneal fluid NGAL. These preliminary data show that peritoneal fluid NGAL may be a useful tool for the early and accurate diagnosis of peritonitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.