a b s t r a c tNeutrophils serve as an active constituent of innate immunity and are endowed with distinct ability for producing neutrophil extracellular traps (NETs) to eliminate pathogens. Earlier studies have demonstrated a dysfunction of the innate immune system in diabetic subjects leading to increased susceptibility to infections; however, the influence of hyperglycemic conditions on NETs is unknown. In the present study we demonstrate that (a) NETs are influenced by glucose homeostasis, (b) IL-6 is a potent inducer of energy dependent NET formation and (c) hyperglycemia mimics a state of constitutively active pro-inflammatory condition in neutrophils leading to reduced response to external stimuli making diabetic subjects susceptible to infections.
Constitutively active neutrophil extracellular traps (NETs) and elevated plasma homocysteine are independent risk factors for Type 2 Diabetes (T2D) associated vascular diseases. Here, we show robust NETosis due to elevated plasma homocysteine levels in T2D subjects and increased components of NETs such as neutrophil elastase and cell free DNA. Cooperative NETs formation was observed in neutrophils exposed to homocysteine, IL-6 and high glucose suggesting acute temporal changes tightly regulate constitutive NETosis. Homocysteine induced NETs by NADPH oxidase dependent and independent mechanisms. Constitutively higher levels of calcium and mitochondrial superoxides under hyperglycemic conditions were further elevated in response to homocysteine leading to accelerated NETosis. Homocysteine showed robust interaction between neutrophils and platelets by inducing platelet aggregation and NETosis in an interdependent manner. Our data demonstrates that homocysteine can alter innate immune function by promoting NETs formation and disturbs homeostasis between platelets and neutrophils which may lead to T2D associated vascular diseases.
Individuals with type 2 diabetes (T2D) display vascular insulin resistance and decreased nitric oxide production leading to vasoconstriction and atherosclerosis. Soluble factors such as pro-inflammatory molecules, and various genetic and epigenetic mechanisms have been implicated to induce insulin resistance in vascular endothelial cells. Epigenetic mechanisms such as altered promoter DNA methylation have been demonstrated in development and progression of metabolic disorders and atherosclerosis. However, underlying precise epigenetic mechanisms regulating cross talk between insulin signaling genes and inflammation in vascular cells remains to be fully understood. Human endothelial cells when (a) treated with interleukin-6 (IL-6) and insulin together, (b) pretreated with IL-6, and (c) under hyperinsulinemic conditions led to a state of vascular insulin resistance resulting in decreased Akt/eNOS activation and subsequent stabilization of STAT3 phosphorylation. IL-6 abrogated insulin effects on angiogenesis in 3D spheroid and matrigel assays. IL-6-induced insulin resistance was associated with decreased activity of DNA methyltransferase isoforms and global DNA hypomethylation, which inversely correlated with S-phase of cell cycle. CpG microarray analysis in IL-6 treated endothelial cells revealed promoters associated hypo- and hypermethylation of 199 and 98 genes respectively. Promoter DNA methylation status of genes associated with insulin signaling and angiogenesis such as RPS6KA2, PIK3R2, FOXD3, EXOC7, MAP3K8, ITPKB, EPHA6, IGF1R, and FOXC2 were validated by bisulfite DNA sequencing. Concentration and time-dependent analysis revealed that IL-6 reduced DNMT1 and DNMT3B but not DNMT3A protein levels. Our data indicate a causal link between IL-6-induced changes in global and promoter-specific DNA methylation, due to reduced DNMT1 and DNMT3B protein levels leading to altered expression of critical genes involved in insulin signaling and angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.