Acute respiratory distress syndrome (ARDS) is a serious and potentially fatal acute inflammatory lung condition which currently has no specific treatments targeting its pathophysiology. However, mesenchymal stem cells have been shown to have very promising therapeutic potential, and recently, it has been established that their effect is largely due to the transfer of extracellular vesicles (EVs). EVs have been shown to transfer a variety of substances such as mRNA, miRNA, and even organelles such as mitochondria in order to ameliorate ARDS in preclinical models. In addition, the fact that they have been proven to have the same effect as their parent cells combined with their numerous advantages over whole cell administration means that they are a promising candidate for clinical application that merits further research.
Epigenetic inactivation of the Hippo pathway scaffold RASSF1A is associated with poor prognosis in a wide range of sporadic human cancers. Loss of expression reduces tumor suppressor activity and promotes genomic instability, but how this pleiotropic biomarker is regulated at the protein level is unknown. Here we show that TGF-β is the physiological signal that stimulates RASSF1A degradation by the ubiquitin-proteasome pathway. In response to TGF-β, RASSF1A is recruited to TGF-β receptor I and targeted for degradation by the co-recruited E3 ubiquitin ligase ITCH. RASSF1A degradation is necessary to permit Hippo pathway effector YAP1 association with SMADs and subsequent nuclear translocation of receptor-activated SMAD2. We find that RASSF1A expression regulates TGF-β-induced YAP1/SMAD2 interaction and leads to SMAD2 cytoplasmic retention and inefficient transcription of TGF-β targets genes. Moreover, RASSF1A limits TGF-β induced invasion, offering a new framework on how RASSF1A affects YAP1 transcriptional output and elicits its tumor-suppressive function.
Mutations activating the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway and inactivating the TP53 tumour-suppressor gene are common mechanisms that cancer cells require to proliferate and escape pre-programmed cell death. In a well-described mechanism, Akt mediates negative control of p53 levels through enhancing MDM2 (murine double minute 2)-mediated targeting of p53 for degradation. Accumulating evidence is beginning to suggest that, in certain circumstances, PTEN (phosphatase and tensin homologue deleted on chromosome 10)/PI3K/Akt also promotes p53 translation and protein stability, suggesting that additional mechanisms may be involved in the Akt-mediated regulation of p53 in tumours. In the present article, we discuss these aspects in the light of clinical PI3K/Akt inhibitors, where information regarding the effect on p53 activity will be a crucial factor that will undoubtedly influence therapeutic efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.