Sulf-2 is an extracellular heparan 6-O-endosulfatase involved in the post-synthetic editing of heparan sulfate which regulates many important biological processes. Activity of the Sulf-2 and its substrate specificity remain insufficiently characterized in spite of more than two decades of studies of this enzyme. This is due, in part, to the difficulties in the production and isolation of this highly modified protein and due to the lack of well characterized synthetic substrates for probing of its catalytic activity. We introduce synthetic heparan sulfate oligosaccharides to fill this gap and we use our recombinant Sulf-2 protein to show that a p-nitrophenol labeled synthetic oligosaccharide allows reliable quantification of its enzymatic activity. The substrate and products of the desulfation reaction are separated by ion exchange HPLC chromatography and quantified by UV-absorbance. This simple assay allows detection of the Sulf-2 activity at high sensitivity (nanograms of the enzyme) and specificity. The method also allowed us to measure the heparan 6-O-endosulfatase activity in biological samples as complex as the secretome of cancer cell lines. Our in vitro measurements show that N-glycosylation of the Sulf-2 enzyme affects activity of the enzyme and that phosphate ions substantially decrease the Sulf-2 enzymatic activity. This assay offers an efficient, sensitive, and specific measurement of the heparan 6-O-endosulfatase activity that could open avenues to in vivo activity measurements and improve our understanding of the enzymatic editing of the sulfation of heparan.
Development of high throughput robust methods is a prerequisite for a successful clinical use of LC-MS/MS assays. In earlier studies, we reported that nLC-MS/MS measurement of the O-glycoforms of HPX is an indicator of liver fibrosis. In this study, we show that a microflow LC-MS/MS method using a single column setup for capture of the analytes, desalting, fast gradient elution, and on-line mass spectrometry measurements, is robust, substantially faster, and even more sensitive than our nLC setup. We demonstrate applicability of the workflow on the quantification of the O-HPX glycoforms in unfractionated serum samples of control and liver disease patients. The assay requires microliter volumes of serum samples, and the platform is amenable to one hundred sample injections per day, providing a valuable tool for biomarker validation and screening studies.
Targeted quantification of glycoproteins has not reached its full potential because of limitations of the existing analytical workflows. In this study, we introduce a targeted microflow LC–MS/MS-PRM method for the quantification of multiple glycopeptides in unfractionated serum samples. The entire preparation of 16 samples in a batch is completed within 3 h, and the LC–MS quantification of all the glycoforms in a sample is completed in 15 min in triplicate, including online capture and desalting. We demonstrate applicability of the workflow on a multiplexed quantification of eight N-glycoforms of immunoglobulin G (IgG) together with two O-glycoforms of hemopexin (HPX). We applied the assay to a serologic study of fibrotic liver disease in patients of HCV etiology. The results document that specific IgG- and HPX-glycoforms detect efficiently fibrotic disease of different degree, and suggest that the LC–MS/MS-PRM assays may provide rapid and reproducible biomarker assay targeting simultaneously the N- and O-glycoforms of the peptides. We propose that such high throughput multiplexed methods may advance the clinical use of the LC–MS/MS assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.